360陶耀东:工业大数据助力工控安全

刚才有的嘉宾说需要把工业大数据的分析变成自动化,我自己理解这个环节里还真的少不了人。工业大数据里常用的方法是信号验证、希尔伯特变化等等。

工业大数据核心解决的目标有3B的问题。一个是隐匿性的问题,我们要看一堆的AD值、净给值、摩擦力等等,它们之后的关系是什么,表达的意思是什么。工业控制系统许多的数据,很长时间内我并搞不清楚这些数到底怎么用。还有碎片化的问题,因为工业环境的限制,我们的数据经常不是连续的,这个时候我们要处理碎片化,同时还有时效性的问题。

如果这个东西要损坏了,等它已经坏了我再说意义就不大了。

另外就是低质性,如何提高分析结果的准确性。因为工业大数据天然要求有低容错性的。所以,工业大数据对分析结果容错率远低于互联网大数据。由沈阳政府出面在建工业大数据平台,解决沈阳工业和装备制造业的问题,希望实现转型升级。

国外工业大数据的一些应用案例,像台湾的高盛用工业大数据分析以后,推出带锯机床,分析带锯机床的健康状态、带锯的衰退,最后确定什么时候换带锯。

还有尼桑和丰田用在机器人的生产线管理。他可以提前预测机器人什么坏,提前进行检修。

还有GE,GE原来是做发动机的,叫GE航空发动机,后来改名叫GE航空,开始做引擎健康监控,并且提供增值服务。我的机器交给你以后,我的生意越来越多,还可以获得更多的增值。

GOOD YEAR做轮胎的大数据分析,做物流省油价值管理。

我的母校做的蓝天数控,做数控机床智能预测,可以对主轴、刀具磨损进行大数据的研究。

工业大数据关注在后阶段零故障、零隐患、零意外、零污染来保证使用,所以IMS提出的是健康预测与维护系统,我觉得跟我们安全的概念很像。

工业大数据的价值和趋势分为三点。一是使得原本隐性的问题变得显性。二是实现产品智能化升级和增值服务。三是寻找价值缺口,开拓新的商业模式。美国工业互联网、德国工业4.0、我们的中国制造2025,都在推动互联网变成一个信息网。

我们都去联网了它的安全是不是自然而然的就会来,因为没有网络安全就没有国家安全。工业控制系统的安全挑战在哪里?这是我们的一个合作伙伴东北大学进行的全球工业系统的扫描。这是北美,他们的工业系统联网密度非常高,大量的在联网。中国像北京、江苏、浙江以及台湾这些经济发达地区联网也越来越多,这是一个趋势。也就是说,我们不能因为怕安全问题而不去联网,而且今年像ISA,美国最著名的安全公司开的ISA2016会提出用连接去保护,也是提倡连完以后用数据进行保护。

随着工业设备越来越联网,安全问题也是越来越紧迫。比如说2010年的伊朗nataz8000台离心机损坏,延期三年发电。去年乌克兰10万用户的停电。用一个常规的导弹能不能让10万用户停电,我估计做不到,有可能得用战术核导弹之类的。一个网络安全造成的威胁有多大?工业系统一旦联网以后,安全就会变成它的刚需,这是一定要解决的。IT领域的信息安全问题一定会暴露出来,工业数据的维度在极速的扩张,工控的边界,因为联网了,制造业越来越复杂,边界在扩张,我们在边界上要做好防御也是非常难的。

安全事件相当于一个核弹的攻击,后果相当严重。而且现在工业领域的安全问题大家经常能听到了。很多攻击已经从普通攻击向APT攻击发展。

我们老说安全,其实英文里有两个词,一个叫SAFETY,一个叫Security.SAFETY是对无意制造的事故或事件进行安全保护工作。Security是对人为的有意破坏的进行保障和保卫。零故障、零疾患、零意外、零污染我们是避免它损坏。避免毁坏、操作停机、处理错误、知识产权丢失,就是我们要发现故障的前兆。

伊朗和乌克兰的事件我们都叫定向的攻击,是看不见的,但传统攻防是看得见的。工业系统多长时间升一次级,基本很少,漏洞是不是永远在里面。所以,工业系统联网其实对它的挑战是很大的。

传统的攻防,在一个地方发现了木马,360发现了木马可以推给其他的用户,告诉你怎么防。所以这种群体防还是比较容易的。

APT是定向的,可能在它出生的那一刻就针对某一目标,别的地方根本不知道,怎么防。

由于攻击的价值非常大,它是不计成本的,而传统攻击是成本攻击,花10万块钱才能得1万块钱,我不会去干这个活,但是APT不会这样。