4、AI有何用
1955年,在写给洛克菲勒基金会的项目申请书上,麦卡锡罗列了计划研究的七个领域:
一、自动计算机;二、编程语言;三、神经网络;四、计算规模的理论(theory of size of acalculation);五、自我改进(机器学习);六、抽象;七、随机性和创见性。
六十多年过去了,人工智能的研究主要专注于六大能力的塑造:
一、感知能力,主要分为视觉和听觉。目前,公众较为熟悉的是计算机视觉(CV)和语音识别(voice recognition);
二、语言能力(NLP),该能力延伸出的范围也是相当广。除了语音识别,还有语音转文字,文字转语音,文本语义抽取,文本情感分析,文本分类,语法分析等;
三、记忆能力。这个能力看似容易,实际非常困难;
四、推理能力;
五、规划能力(planning),对最优决策/路线/动作的求取。比如自动驾驶技术离不开高性能高精度的规划算法;
六、学习能力。比如机器学习、深度学习。特别是深度学习,是目前市场最为火热的一个人工智能分支。
不难看出,目前大家推崇的阿尔法狗,只是人工智能的一个细小分支。
正如一位知乎用户所言,当前被称为“人工智能”学界的,实际上是相当广泛的一批人,人工智能的问题相当多样化,主流学术界一般都不会称自己是搞“人工智能”的,一般都是搞机器学习、统计学习、神经网络、逻辑编程等。
从这个角度看,人工智能的商业泡沫,不会也不能阻挡这个学科的发展。
2006年,达特茅斯会议五十年,十位当时的与会者,仅有五位还在世,摩尔、麦卡锡、明斯基、塞弗里奇和所罗门诺夫在达特茅斯再聚首,忆往昔,展未来。
参会人之一霍维茨(Horvitz)和老婆拿出一笔钱在斯坦福大学捐助了一个“AI100”的活动:在下面一百年里各路豪杰聚会,每五年出个AI进展报告。
5、AI有多危险
你是做什么的?
我们做的是人工智能!
为什么你是在热钱来了后创办这家公司?
2016年3月28日,在一场投资洽谈会上,硅谷风投Greylock合伙人Josh Elman与创业者交谈时,反复强调,人工智能不是“创业噱头”,要能解决真问题。
芝加哥大学在硅谷举办人工智能论坛,投资人这样谈如何评估一家人工智能初创公司:产品第一天上市就能给用户“价值”,而不是需要其他有的没的配套才能跟用户价值;产品有获利模式,不用损益平衡但要有营业额;最重要的是,每一个新来的用户带给公司更多的价值。
其实,面对如今的人工智能风潮,投资人和企业都在用一条商业判断标准,丈量风险。但是,他们都忽略了伦理风险。
事实上,人类在伦理面前,充满偏见。
日本制造公司NISSEI ECO企划书中,有一项内容备受瞩目,用人型机器人Pepper主持葬礼。
美国脸书(Facebook)人工智能研究所实验室,两个机器人有时竟然用非人类语言,进行谈判性对话。研究人员不得不调整模型,不让其肆意聊天。
前者的商用价值就一定比后者大吗?
真不一定。没人能肯定,死者家属能够坦然面对机器人的祷告,因为那些声音里不可能饱含情感和宗教情怀。
对于“未来人工智能(AI)在人类社会中扮演的角色”这一问题,美国硅谷两大巨头近日的争论,是上述问题的一个缩影。
特斯拉(Tesla)执行长马斯克(Elon Musk)认为,未来人类会被人工智能主宰,“人工智能的潜在危险不是空穴来风,在未来确实有可能危及人类生存。”他表示,在未来人工智能有可能反倒变成人类的主人,而人类则沦落为次等公民,甚至有可能面临人工智能的叛变。
脸书执行长扎克柏格(Mark Zuckerberg)则认为,这样悲观的态度非常不负责任,“运用人工智能不会导致如马斯克所预言的情况,而是对人类大有助益,以自动驾驶为例,车祸仍是人类主要死因之一,如果你用人工智能解决这个问题,那将会是重大的进步”。
推特前执行长迪克(Dick Costolo)也加入讨论,扎克柏格低估了人工智能的潜在危险。