批评者最主要的忧虑是,使用新型的数据和计算机算法,企业和机构能够建立“代理”,不公开通过性别或者种族等因素进行歧视,但可能利用相互关联的信息建立某个特定客户的深度剖析档案。
“现在有了数据,你可以预测任何事情,”零售金融服务初创公司One Financial的创始人马克斯•加内(Max Gasner)说,“根据Facebook和Twitter上的数据,可以判断你是什么种族,是同性恋还是异性恋。你可以预判出很多法律禁止作为借贷审核依据的信息,歧视也可以做得更加隐蔽。”
认真查看“点击流”数据,或者使用让公司能够追踪用户互联网活动的“网路信标”,能够仅通过观察个人如何接入和浏览网络,就发现关于个人的身份或者社会经济地位的宝贵线索。例如,皮尤研究中心(Pew Research Center)和美联储(Fed)的研究发现,黑人和拉丁裔使用手机访问银行账户的倾向要高得多,因此只要查看人们浏览网络的方式就能发现其种族身份。
“因为大数据评分使用的算法不公开,所以不可能分析算法带来的潜在的种族歧视影响,”美国国家消费者法律中心(NCLC)在最近一份关于大数据的研究报告中写道。
除了算法本身,监管借贷领域的大数据应用的法律依然很模糊。
“说到大数据,还没有明确的禁令规定不可以在核发贷款时使用大数据,”美国世达律师事务所(Skadden Arps)的合伙人阿南德•拉曼(Anand Raman)说,“然而,如果使用这种数据得出的结果对某个受保护群体的成员超乎寻常地不利,那么这种做法就可能变成一个公平借贷问题。”
正是出于对监管审查的担忧,许多大银行和信用卡机构尽管据信正在进行新数据方面的尝试,但却不愿意全心全意投入到非传统信贷信息的世界中。
“对社交数据,所有的信用卡公司实在是又爱又怕,”某大型信用卡公司的前数据挖掘师说。他表示,公开使用大数据来指导贷款核发的金融集团或许面临“登上报纸头条的风险,或者可能会被认为存在歧视”,就像信用卡公司2008年发给约翰逊的那封信造成的后果那样。
事实上,到目前为止,公开使用非传统信息的大多是一些初创公司。这些公司表示,它们的目标是利用如今可用的各种数据的大杂烩,从而更高效地发放贷款,或是向那些缺乏传统信贷信息的人发放贷款。
使用互联网、将借款人和贷款人直接联系起来的个人对个人(P2P)贷款机构,就是一个突出的例子;许多P2P贷款机构使用社交媒体信息和其它类型的非传统数据来补充贷款核发流程,或防止欺诈——比如,自动验证申请贷款者的职业信息是否符合他们的领英(LinkedIn)资料。
分析社交网络或许能让贷款机构不仅猜测出申请贷款者的种族、社会经济地位,还能猜测出他们的顾客忠诚度相对如何。同样的,研究申请者点击和浏览网页的方式,能提供有关其性格特征的线索,比如是否冲动。可穿戴技术能够追踪从锻炼习惯到心率的一切信息,这种技术的应用也为渴求数据的贷款机构打开了另一片信息领域。
“如果你是一个有条理、有责任心、习惯良好的人,那么你的信用基本上也会很好,”Payoff负责行为科学的副总裁Andy Wen说,“这些事情往往是相互联系的,如果你看到一个人在某个生活领域的行为很有条理,你会认为这种行为也会反映到信用上。”
这些公司坚信,利用行为数据可以让原本无法获得信用的人获得信贷。此外,很多人表示,利用这种信息可以去除贷款核发流程中的主观性,以往的贷款核发流程涉及由实体银行网点的信贷员亲自对贷款申请者进行评估。
“如果你探查大数据是什么,它本质上就是对客观信息的使用。”拉曼说,“我们绝对可以说,从降低公平借贷风险的角度出发,使用客观信息好过依赖主观判断或自行决定。”
有人说,比起核发金融产品,大数据和算法驱动的消费者评分可能在金融产品营销方面用处最大。尼尔森(Nielsen)的Prizm市场分级法(Potential Rating Index by Zip Market,依靠邮编的潜在市场评级指数)依靠邮编将消费者划分为从“上层阶级”到“社会底层”的多种范畴。该分级法将“社会底层”群体描述为由“多种族裔”的单身男女和单亲父母组成的“过渡”阶层。这种精准定位意味着非目标群体的成员可能仅因为他们永远不会看到相关广告,而永远没机会获得某种贷款或金融产品。