2017中国大数据应用发展报告 工业、国防、金融、旅游受关注

互联网和物联网无时无刻不在记录,大数据可以追踪、追溯任何一个记录,形成真实的历史轨迹。追踪是许多大数据应用的起点,包括消费者购买行为、购买偏好、支付手段、搜索和浏览历史、位置信息,等等。

识别。在对各种因素全面追踪的基础上,通过定位、比对、筛选,可以实现精准识别,尤其是对语音、图像、视频进行识别,使可分析内容大大丰富,得到的结果更为精准。

画像。通过对同一主体不同数据源的追踪、识别、匹配,形成更立体的刻画和更全面的认识。对消费者画像,可以精准推送广告和产品;对企业画像,可以准确判断其信用及面临的风险。

提示。在历史轨迹、识别和画像基础上,对未来趋势及重复出现的可能性进行预测,当某些指标出现预期变化或超预期变化时给予提示、预警。以前也有基于统计的预测,大数据大大丰富了预测手段,对建立风险控制模型有深刻意义。

匹配。在海量信息中精准追踪和识别,利用相关性、接近性等进行筛选比对,更有效率地实现产品搭售和供需匹配。大数据匹配功能是互联网约车、租房、金融等共享经济新商业模式的基础。

优化。按距离最短、成本最低等给定的原则,通过各种算法对路径、资源等进行优化配置。对企业而言,提高服务水平、提升内部效率;对公共部门而言,节约公共资源、提升公共服务能力。

上述概括并不一定完备,大数据肯定还有其他更好的功能。当前许多貌似复杂的应用,大都可以细分成以上几种类型。例如,贵州推行的“大数据精准扶贫项目”,从大数据应用角度,通过识别、画像,可以对贫困户实现精准筛选和界定,找对扶贫对象;通过追踪、提示,可以对扶贫资金、扶贫行为和扶贫效果进行监控和评估;通过配对、优化,可以更好发挥扶贫资源的作用。这些功能也并不都是大数据所特有的,只是大数据远远超出以前的技术,可以做得更精准、更快、更好。当然,技术无法左右利益,贵州扶贫目标的完成,并不是有了大数据就万事大吉了。

成果谁买单?

成果谁买单是我们评价大数据应用的第三个也是最后一个关注点。道理很简单,不创造价值的应用不是好应用。能不能创造价值,关键看谁买单。我们不需要那些靡费公帑的“样板”工程、“面子”工程,也不需要那些炫耀神技、制造概念的创富故事。我们关注大数据的应用是否实实在在提升能力、改善绩效。如果大数据用于自身的产品设计、营销推广、资源配置,那就看企业竞争力是不是提升了,看企业最终是不是比以前更赚钱了。如果大数据用于为第三方提供服务,那就看是不是有人愿意付费、愿意持续付费。但如果是用于公共领域,还要看政府或公共部门的付费值不值,不仅仅是从出资方的视角看值不值,还要从老百姓的视角看值不值。

当我们面对一项大数据应用时,只要简单问一问上面三个问题——数据哪里来、数据怎么用、成果谁买单——就能揭开许多“伪装”。比如,许多应用并没有可靠的数据来源,或者数据来源不具备可持续性;还有些应用并没有技术或市场支撑,只是借助大数据风口套取政府部门或一些投资者的“傻钱”罢了。当然,如果经得起上述“大数据三问”,也并不一定算得上优秀,但也离优秀的大数据应用不远了。表1列举了本书中收集的几个案例,从数据来源、应用方式和创值空间三个角度,可以清晰揭示大数据是如何应用的。当然,这些案例反映的大数据应用既非面面俱到,也不是尽善尽美。我们希望通过这些实际的案例表明大数据应用踌躇前行的步伐和未来发展的前景。

工业大数据面临三大制约因素

1.工业大数据安全和开放体系亟待建立

数据安全和数据开放体系建立是工业大数据大规模应用的两个重要前提。如前所述,我国多数工业企业的信息化建设基本上均是由业务部门在业务开展过程中根据自身的局部需求出发,开展建设,缺少统一规划,形成了部门割据的信息化烟囱,导致数据编码不一致,系统之间不能相互通信,业务流程不能贯通。因此,我国工业企业无论在数据的总量上,还是数据的质量上,均和欧美发达国家制造企业存在较大差距,且由于行业垄断或商业利益等原因,数据的开放程度也不高。