中国IDC圈2月7日报道:事实上,如果企业能够搞清楚围绕着大数据的一些误解,可能能够帮助他们避免制定错误的业务发展方向,进而化险为夷,防止浪费大量的时间和金钱,耗费企业的市场竞争地位,或者损害企业的声誉。
如下,是一些关于围绕大数据理解的最大的误区。
误解1:只有数据科学专家才能处理大数据
事实上,仅仅依靠数据科学专家本身是远远不够的。
“如果企业自身从一开始都不知道他们希望通过大数据分析中寻找到什么,那么,您企业所聘请的数据科学专家们对于能够从大数据分析中获取怎样的信息也是爱莫能助的。” 宾夕法尼亚大学医学院数据分析高级主管帕特。法雷尔说。“企业所需要的是那些熟悉本行业领域的相关知识,了解行业内存在什么样的问题,能够从大数据分析中获得怎样的特定行业价值洞察力的专业人士。”
例如,宾夕法尼亚大学医学院包括卫生系统和医学院。其卫生系统已经花费了很长一段时间在数据仓库中进行临床数据采集方面的工作。而与此同时,其医学院利用新技术进行人类基因组测序方面的研究过程中需要大量的数据。
“我们知道我们所收集的海量大数据中肯定蕴含着相当有价值的东西,并且我们最终能够通过一定的计算能力来访问到这些有价值的信息。”法雷尔说。结合医学专业知识进行数据分析为他们的医疗保健预测开辟了一个全新的领域,他说。
误解2:更大的数据量意味着更大的价值
收集、存储数据,并对其进行分类编目,需要花费相当的时间和资源,法雷尔说。而如果不加区别地仅仅是单纯的收集大量的数据信息通常会使得更有价值的项目转移。
法雷尔建议,企业在开始收集数据之前,必须对具体的指标或关键绩效指标有一个清晰的认识。
“企业需要明白,必须要通过智慧,对收集到的海量数据信息进行分析,进而从中挖掘出价值点。”他说。“仅仅是进行数据收集本身的工作是远远不够的。 ”
误解3:大数据仅仅只对大企业才有用
大公司可能有更多来自企业内部的数据源,但即使是小企业也可以充分利用来自社交媒体平台,政府机构,以及数据供应商的数据。
“不管您企业的规模大小是怎样的,当您在做出相关的业务发展战略决策时最好是基于数据信息分析进行的,而非仅仅是单纯依靠直觉。” 戴尔软件信息管理解决方案产品管理执行董事Darin Bartik说。
较之规模更大的企业而言,规模较小的企业可能会比同行的大企业较少的利用数据来做出企业决策,但是,一旦小企业这样做了,他们可以更快的制定出更好的企业决策。
“小企业可以利用最佳实践解决方案成为更为数据信息驱动的企业,实际上超过或智胜那些规模更大,对数据驱动反应缓慢的竞争对手。”他说。
误解4:现在收集,之后在分类整理
现如今的存储的确是越来越便宜了,但其毕竟不是免费的。而且对于许多企业来说,他们存储数据胃口扩大的速度远远超过了存储成本下降的速度。总部位于旧金山的云计算商务智能供应商Birst公司的首席执行官Brad Peters说。
那些认为仅仅只是单纯的收集数据的企业,以后会为如何处理这些海量数据而发愁的,他说。“我曾经看到过一些大公司收集了海量的数据信息,其收集和存储费用不断上涨,但企业并没有从中得到任何有价值的分析洞察。 ”
事实上,对于一些数据集而言,其已经开始适用收益递减的规律了。例如,您需要根据某个选举的投票人的数量来预测选举结果,这样您就需要一定数量的投票人,以获得具有代表性的样本。但在您收集的投票人数量超过某一个点之后,增加更多的投票人并不会显著影响对于选举结果判断误差的程度。
Brad Peters问:“您企业仅仅靠收集更多的数据信息,就可能带给您更精准的预测分析度吗?”或者说收集更多的数据信息难道不是意味着您企业需要雇佣更多的人手吗?您能够确保您企业的网络会更好吗?我们收集数据信息的速度不能太快,不能超过了企业经济状况和预算增加的速度。“
而且,这不仅仅只是存储成本的问题,位于旧金山专门从事非结构化数据分析的Recommind公司的大数据管理兼信息管理全球负责人Dean Gonsowski说。例如,如果数据失控,可能会让企业的成本花费超出控制,他说。并且,企业数据仓库中存储更多的数据信息就意味着企业需要承担更多的遵守数据监管法律的责任。最后,企业收集的数据越多,就越需要对这些数据进行排序整理。“当数据库达到数十亿的搜索记录时,搜索时间势必会延长,这样,那些从来没有经过很好处理的信息量真的会造成系统堵塞。”