还在烧钱买流量?还要雇那么多客服?

陈建说,在中国,类似“盲区”更广,大数据征信、云评分将成为中国普惠金融的必然之路。中国约有8亿的潜在消费信贷用户,但是,其中只有3亿有征信数据,多达5亿的人没有征信记录。如何考察这5亿人的信用状况?如何更加有效地判断已有征信记录的3亿人?答案就是大数据云评分,也就是大数据征信。

在中国,蚂蚁金服旗下独立第三方征信机构——芝麻信用被认为是大数据云评分的典型代表。除了传统金融借贷信息,芝麻信用依据网络金融数据、电商数据,政府及公共机构数据、合作伙伴数据,以及各种用户自主递交的信息等,运用云计算、机器学习等技术,呈现个人信用状况,让缺少信贷记录的人群也开始享受信用的便利。

数据“红娘”如何速配单身狗

香港科技大学杨强教授从另一个角度解读了数据挖掘和大数据的应用。在现实生活中,很多人通过婚恋网站找到了自己另一半,而这个过程中,大数据扮演了非常重要的“红娘”角色。 

经过百合网多次大数据分析,男性和女性相处之道十分微妙。男女在等待对方回信息的耐心程度上,男性的平均时间是8.5小时,女性则是8.7小时。而在恋情关系中,女性对于财产的重视程度远远高于男性。

就异地恋接受程度来说,男性希望伴侣不要远离,而女性的心理较为复杂,她们偏向于同城,但是当距离特别远时,却认为远距离不是问题。再来说颜值问题,结果显示男性通常是视觉动物,相比之下,女性对于颜值不是那么看重。

大数据有体量大、速度快等特点,但还有一个容易被忽略特性是种类多,当把不同种类的数据聚合起来时,会碰撞出一些意想不到的知识和火花,这是真正的大数据的威力所在,这也是婚恋网站等利用大数据的原因。

用大数据帮助企业找到增长点

中科院-路透金融风险管理联合实验室主任、中科院管理学院教授魏先华认为,大数据的信用应用不仅仅是传统的征信数据,新型的互联网大数据会是我们非常重要的补充,像芝麻信用这一类大数据提供信用的方式,将来可能起到越来越大的作用。

我们现在处在一个新常态的时期,增速减慢,经济没有原来那么好了。这个时候,可能信用的事件就会发生了,过去是有钱不还,未来是确实没钱了。我们可以从数据里面挖掘,利用数据科学家的智商,来帮助企业找到新的经济增长点。

你更需要基于数据产生洞见

蚂蚁金服首席战略官陈龙说,你需要很多的数据,你更需要基于数据产生洞见。

大家都想做普惠金融,如果要做得好,你必须能够甄别风险,在公益属性和金融属性之间找到平衡;你也必须能够在甄别风险的前提下做到普惠。以前的双11,我们 都会非常头疼。没有用云计算的时候,每秒钟处理300笔。后来用了云计算的能力,2015年达到每秒8.59万笔。在客服人员降低很多的情况下,客服应答 的成功率也大大提高了。这就是大数据的力量。

如何让大数据在你的企业中产生作用?

别人说大数据说得很热闹,如何让大数据在你的企业中产生作用?在芝麻信用总经理胡滔看来,有三个特别关键的因素。

第一、你首先要想清楚用大数据解决什么样的问题?从金融角度来说,就是当前我们如何更好地服务海量的长尾客户。这些客户的金融需求是非常个性化的,他们的时间也是碎片化的,他们的钱也是很碎片化的,没有大额度的资金。今天大数据要解决的金融问题,就是如何用低成本和有效的方式去实现普惠金融。

第二、你必须要有数据,而且是大而有效的数据。这里要澄清一个误会,一说大数据,有人就误以为是所有在网络上留存的数据,其实这些数据里面有很多是没有价值的噪音。经济信用的评价,不会采集聊天、语音、短信和社交媒体的言论,只会在用户授权的前提下采集正当、必要、有效的和经济信用相关的数据。我们看到美国 LexisNexis所指的大数据在保险行业的应用,除了传统金融借贷数据之外,还有大量的水电煤缴费等公共政务,以及包括金融交易、运营商账单在内的各 种非传统征信数据。无论是LexisNexis在保险行业,还是蚂蚁金服在保险、信贷、征信领域,政府、公共机构及非传统借贷数据的叠加,都能得到很好的 应用,有效地提升模型的效能。