人工智能大讨论:2045年人工智能超越人类靠谱么?

中国IDC圈6月14日报道,一场Google AlphaGo与围棋世界冠军李世石的对弈吸引了全世界的目光,也让人工智能再度成为业界讨论的热点话题。人工智能自1943年诞生以来,在几十年的发展历程中经历了多次潮起潮落,人们却从未停止过对人工智能的研究与探索。当下,摩尔定律驱动计算力不断增长,云计算、大数据、移动互联网这些趋势在影响着人类社会的生活与生产方式,也成为人工智能的催化剂,促使着人工智能不断的演进。那么,在大数据时代到来的背景下,人工智能未来会朝着什么方向发展?人工智能在未来能够超越人类么?人工智能两大流派:联结主义和符号主义孰优孰劣?近日,在百分点数据与价值国际论坛上,来自北京大学数学学院教授林作铨、东南大学计算机与工程学院教授漆桂林、普惠金融首席数据科学家李文哲以及百分点集团技术副总裁刘译璟等多位人工智能领域的专家就这些话题进行了深度讨论。

联结主义与符号主义孰优孰劣?

众所周知,人类的智能主要包括归纳总结和逻辑演绎,与之对应的就是人工智能中的联结主义和符号主义两大最主要的流派。前者典型方法为神经网络、统计学习、深度学习等;而后者则包括形式语言、逻辑推理、专家系统等。这两大流派在人工智能发展历史中互有起落。而随着2006年加拿大多伦多大学教授、机器学习泰斗Geoffrey Hinton在《科学》杂志发表深度学习方面的论文,深度学习在学术界以及商业界持续升温,语音识别、图像识别、自然语言处理、搜索广告等深度学习相关的应用为之大热。作为联结主义的代表,深度学习俨然成为人工智能当下最为热门的领域。

对此,北京大学林作铨教授认为:“2006年开始迅速发展的深度学习恰恰在人工智能的基本原理方面并没有太大贡献。深度学习的本质是靠大量数据进行层级计算,第一层学习之后变成另一种表示,然后特征的抽取变成第二层,层级越多所达到的效果一定会更好;另外,深度学习每一层的计算或者所谓的学习其实本质就是应用数学问题,即解出一个信息函数,但是原则上这些非线性函数都是难计算的。因此,带来两大问题就是:首先,深度学习网络不断增加深度层级的意义;另外就是每一层级的计算的理论问题,计算数学解决不了,深度学习也解决不了。”

东南大学计算机与工程学院教授漆桂林则认为,让机器学习具备认知和推理能力是人工智能领域下一步需要真正思考的难题,“ 不是所有公司都拥有Google这样的大数据能力,Google跑深度学习的效果非常好。但是换了另外一家公司却可能没那么好的效果。 如何在更小数据量上面提高机器的学习能力,其实需要让它具有认知和推理能力。目前几个深度学习领域的权威专家已经在不同场合表示需要把人类的规则推理引入到神经网络,使得神经网络具有更好的解释性。”

“人们对于深度学习的理解还没到我们想要的人工智能的程度,想要通过深度学习的模型达到人的智慧还非常难做到。”普惠金融首席数据科学家李文哲补充道。

对于符号主义而言,认为人工智能源自数学逻辑,核心思想就是应用逻辑推理法则,在人工智能中体现就是机器定理证明。符号主义认为知识是信息的一种形式,是构成智能的基础,知识表示、知识推理、知识运用是人工智能的核心,知识通过符号表示,认知即为符号的推理过程,推理过程又可通过形式化语言来描述,并且主张通过逻辑方法来建立人工智能统一体系。林作铨教授表示:“符号主义的核心目标仍然是探寻人工智能的基本原理,属于基础研究。 人工智能的原始目的之一就是通过计算机来模拟人的智能行为,探寻智能的基本原理,这个目标还远远没有达到。 ”

联结主义OR符号主义:关键在于数据量

人工智能之所有在当下受到广泛关注,除了类似Watson参加危险游戏、Google AlphaGo对战围棋世界冠军这些热门事件外,更多的是来自基于人工智能的应用开始得到广泛使用,比如银行领域的自动欺诈检测系统应用、零售商的销售定价、智能家居机器人、人脸识别系统、自动语音识别等等。那么对于公司而言,在人工智能领域方向是选择联结主义还是符号主义呢?

对此,普惠金融首席数据科学家李文哲以金融业为例表示两种方向都非常有用,他表示:“金融领域的特点是,公司刚成立不会拥有大量数据,因此不会尝试联结主义这种做法,因为像深度学习肯定需要大量的数据才能得到一个较好的结果。在