中国信息通信研究院李海花:互联网和大数据的关系

现在一共有七个组,总体组、需求组、技术与标准租、安全组、试验平台组、产业发展组、国际合作组。在总体组下面设了三个特设组,工业大数据、边缘计算和知识产权,也是希望能够对这些重点的方向汇聚力量快速突破,知识产权主要是做支撑方面的服务。

七个工作组主要工作范畴的总体考虑。总体组主要是体系架构的研究和整体工作统筹。需求组涉及到共性和行业特有需求的分析。技术标准租对包括网络相关的、云、大数据相关的基础研究和标准的制定。我们希望跟德国和美国IIC合作,组织相关的试验平台,把我们的研究成果拿到试验环境下验证推动。包括方案在试验平台上的试运行。也会做产业发展推广的工作,包括试点示范,包括解决方案的遴选,最佳实践推荐。另外是跟国际合作的推动。

我担任总体组的组长,阿里的是需求组,航天科工是技术与标准,360是安全,试验平台是华为,中国电信是产业发展,信通院是国际合作,华为是边缘计算组组长。

下次的会议计划在7月份召开,各个工作组的工作同时来推动。

我把大的成果梳理了一下。一个是试验报告,大家可以关注一下,成熟以后会在联盟的网站上发布。试验平台也会搭建水平架构和垂直领域试验平台。产业发展这块也有很多工作要做,包括试点示范、解决方案的输出、优秀案例的发布,另外也有推动标准研制和国际合作的工作。5月份左右开始有成果的输出,节奏应该是很快的,大家可以多关注联盟。

下面是工业大数据。我们把工业大数据放在很核心的位置,含很多环节,包括采集、处理、建模、决策。数据源很多,来自不同的元素,包括传感器、机器、工厂、企业经营数据。通过网络互相衔接形成大的闭环,包括应用的支撑。

我们也对工业互联网与传统的工业数据和互联网数据进行了对比,包括范围、采集的频率、数据量、格式、关联性、实时性的要求。整体来看工业互联网实时性的要求我们觉得更高,特别是在生产制造环节。工业这块的数据量也是非常大的,数据的结构也是并存的,我们也是做了多种比较。实时性比较突出,另外没有呈现出来的,工业门类非常多,不同的行业需要分析不同的特性,关注的数据也是不太一样的。

目前工业架构中的数据应用情况有一个展示,总体来看还是相对割裂的,没有完全形成一个闭环。企业有一个网关,这是防火墙,生产环节的数据基本上还是在这个层面,没有很好的和企业之间衔接起来。我们去调研,很多数据的配置和使用都依赖于员工的调整,没有达到智能化自动的调整。另外,没有形成真正的闭环,以及和企业层面形成大的闭环。

工厂部署环节图。将来工厂内部两个层面,一个是在工厂下面形成一个闭环,将来边缘计算的能力是很关键的,数据汇总到综合的处理平台,通过工厂级的控制,用服务器实现对底层的控制。另外,很多数据能够上到企业级的数据平台上去,包括互联网的数据,包括生产环节的数据。最终通过数据的分析实现对生产经营的决策和反馈控制。

从这张图上可以看到将来数据对信息系统的演进和对外连接也会有很大的影响和推动作用。

这是我们从功能架构给出来的工业数据,分成几个大的层次。这张框架图我们还在讨论修改中,和最终发布的不完全一样,我们分了数据采集,有各个环节的数据采集。然后是数据集成和处理,这些数据采集上来以后,跟实现工业系统的数据对象关联,很多不同的数据进到不同的数据库里。数据采集上来以后要叠加语义进行描述,以便进行数据的分析和建模。最终实现各个环节智能化的应用。在建模上我们跟国外可能有一些差距,不仅是某一个功能,包括产线整体的建模、流程的建模,这是未来很重要的关键。

简单把我们对工业数据的理解介绍一下。联盟下面有大数据的特设组,希望通过特设组快速推动工业大数据的研究。包括整体性的研究、需求框架、标准试验。

这是具体的成果,包括发布大数据行业需求分析报告,对具体行业数据应用情况和需求进行分析。二是针对工业大数据给出一个体系框架,包括后续的实施路径,发布一个白皮书。工业大数据也是和联盟里的很多组是相关的,所以还有一个重要的工作,特设组的工作是将来我们要制定什么样的工业大数据的标准,开展什么试验,开展什么验证内容,由哪些专门的行业来推动,会给出倾向性的建议。