结构化数据 vs. 非结构化数据:结构化数据由明确定义的数据类型组成,其模式可以使其易于搜索。而非结构化数据通常由不容易搜索的数据组成,其中包括音频、视频和社交媒体发布等格式。
结构化数据 vs. 非结构化数据非结构化数据与结构化数据并不表示两者之间存在真正的冲突。客户不是基于他们的数据结构选择,而是在使用他们的应用程序中选择:关系数据库用于结构化数据,大多数其他类型的应用程序用于非结构化数据。
然而,结构化数据分析的难易程度与非结构化数据的分析难度之间的关系日益紧张。结构化数据分析是一个成熟的流程和技术。非结构化数据分析是一个新兴行业,在研发方面需投入大量的资金,但这不是一项成熟的技术。企业内部的结构化数据与非结构化数据问题决定了他们是否应该投资于非结构化数据的分析,以及将这二者结合是否成为一种更好的商业智能?
什么是结构化数据?
结构化数据通常驻留在关系数据库(RDBMS)中。其字段存储长度显示数据电话号码,社会安全号码或邮政编码。甚至像名称这样的可变长度的文本字符串也包含在记录中,这使得它很容易搜索。只要数据是在RDBMS结构内创建的,数据就可以是人工或机器生成的。这种格式是搜索与人类产生的查询和使用的数据和字段名称类型的算法,如字母或数字、货币、日期。数据包含结构化数据的普通关系数据库应用程序包括航空预订系统、库存控制、销售事务和ATM活动。结构化查询语言(SQL)允许在关系数据库中查询这种类型的结构化数据。
一些关系数据库确实存储或指向非结构化数据,例如客户关系管理(CRM)应用程序。由于备忘录字段不会将自己放到传统的数据库查询中,因此其集成可能不理想。尽管如此,大部分客户关系管理(CRM)数据都是结构化的。
什么是非结构化数据?
非结构化数据本质上是结构化数据之外的一切数据。非结构化数据具有内部结构,但不通过预定义的数据模型或模式进行结构化。它可能是文本的或非文本的,也可能是人为的或机器生成的。它也可以存储在像NoSQL这样的非关系数据库中。
典型的人为非结构化数据包括:
文本文件:文字处理、电子表格、演示文稿、电子邮件、日志。
电子邮件:由于其元数据,电子邮件具有一些内部结构,人们有时将其称之为半结构化。但是,其消息字段是非结构化的,传统的分析工具无法解析它。
社交媒体:来自Facebook、Twitter和LinkedIn的数据。
网站:YouTube、Instagram、照片分享网站。
移动数据:短信、地点。
通信:聊天、即时消息、电话录音、协作软件。
媒体:MP3、数码照片、音频文件、视频文件。
业务应用程序:MS Office文档、生产力应用程序。
典型的机器生成的非结构化数据包括:
卫星图像:天气数据、地形、军事活动。
科学数据:石油和天然气勘探、空间勘探、地震图像、大气数据。
数字监控:监控照片和视频。
传感器数据:交通、天气、海洋传感器。
最具包容性的大数据分析可以使用结构化数据和非结构化数据。
结构化数据与非结构化数据:有什么区别?
除了存储在关系数据库和存储在一个关系数据库之外的明显区别之外,最大的区别在于分析结构化数据与非结构化数据的便利性。针对结构化数据存在成熟的分析工具,但用于挖掘非结构化数据的分析工具正处于萌芽和发展阶段。
用户可以通过文本非结构化数据运行简单的内容搜索。但是,缺乏有序的内部结构使得传统数据挖掘工具的目标失败,企业从富有价值的数据源(如媒体、网络、博客、客户交互,以及社交媒体数据)获得的价值很小。即使非结构化数据分析工具在市场上出现,但没有任何一个供应商或工具集是明确的赢家。许多客户不愿意投资于具有不确定发展路线图的分析工具。
除此之外,非结构化数据比结构化数据要多得多。非结构化数据占企业数据的80%以上,并且以每年55%和65%的速度增长。如果没有工具来分析这些海量数据,组织会在商业智能表上留下大量有价值的数据。
传统上,结构化数据对大数据应用程序来说更容易消化,但如今的数据分析解决方案正在这方面取得重大进展。