如何避免大数据分析失败

大数据

遵照以下6种最佳方法,可以打破竞争,创造新的收入来源,更好地为客户服务。

大数据和分析方案可以改变游戏规则,为您提供洞察力,帮助您打破竞争,创造新的收入来源,更好地为客户服务。

大数据和分析方案也可能产生巨大的错误,导致浪费大量资金和时间,更不必说会流失一些有才华的技术专家,他们已经厌倦了在这种管理不善的环境中工作,令他们沮丧。

如何避免大数据分析失败呢?从基本的业务管理角度来看,有一些最佳做法是显而易见的:一定要有公司最高层管理人员的支持,确保所需的全部技术投资获得足够的资金,并引入具有专业知识的人才和/或提供良好的培训。如果你没有先解决这些基础问题,那么没有什么比这更重要了。

假设您已经解决了这些基础问题,大数据分析的成功与失败之间的区别在于如何处理大数据分析的技术问题和挑战。您可以做以下几点来确保大数据分析的成功。

1. 慎重选择您的大数据分析工具

许多技术上的失败源于公司购买和实施的产品,这些产品经过实践证明是非常糟糕的,完全不适合公司想要实现的目标。任何供应商都会用“大数据”或“高级分析方法”这些词来描述他们的产品,试图利用这些术语来大肆宣传。

但产品的质量和效率以及侧重点,都有很大的不同。因此,即使你选择了一种技术上很强的产品,但它可能不是你真正需要的产品。

几乎所有大数据分析工具都需要具有的一些基本功能,例如数据转换和存储架构(如Hadoop和Apache Spark)。但是,在大数据分析领域也有多个细分领域,所以您必须为您的技术战略实际涉及的这些细分领域购买产品。这些细分领域包括流程挖掘、预测分析、实时解决方案、人工智能和商业智能控制面板。

在决定购买任何大数据分析产品或存储平台之前,您需要先了解真正的业务需求和问题,然后选择那些能有效解决这些具体问题的产品。

例如,由于编译庞大的数据集很复杂,您会选择认知大数据产品,例如采用人工智能分析方法来分析非结构化数据。但是,您不会将认知工具用于分析结构化和标准化数据,因此您可以选择众多分析产品中的一个来实施,以更合理的价格产生实时高质量的洞察力,电信公司(沃达丰)大数据的全球流程负责人,来自以色列的埃斯波西托(Exposito)说道。

埃斯波西托说,在为您的生产环境选择产品之前,至少要使用两种产品来运行验证其设计概念,这是明智的。该产品还应该能够与您的企业相关平台进行交互。

每个大数据分析工具都需要在后端系统中开发数据模型。这是项目最重要的部分。因此,您需要确保系统集成商和业务主题专家能够携手合作。花些时间,第一次就把该项工作做好。

一定要记住,这很重要,正确的数据应该始终可以使用并转换为商业语言,因此用户会完全理解输出的结果,从而可以使用它来寻找商机或进行流程改善。

2.确保工具易于使用

大数据和高级分析方法很复杂,但是商业用户用于访问和理解数据的产品则不需要很复杂。

为商业分析团队提供简单有效的工具,用于数据发现以及分析和使数据可视化。

莎伦·格拉芙(Sharon Graves)说,对于域名注册商GoDaddy来说,找到适合的组合工具并不容易,该公司使用商业智能工具—evangelist进行企业数据分析。该工具必须可以方便快速地进行可视化,而且可以进行深入数据分析。GoDaddy公司能够找到一些产品,可以让商业用户轻松获取适当的数据,然后自行生成可视化数据。这样就可以使分析团队解放出来,进行更高级的分析工作。

最重要的是,不要向非技术性商业用户提供程序员级别的工具。他们会由此变得沮丧,可能会使用以前的工具,而这些工具是无法胜任工作要求的(否则,你不会有大数据分析项目)。

3.使项目和数据与实际业务需求吻合

大数据分析工作可能失败的另一个原因是分析工作最终用来搜索并不存在的问题。信息服务供应商益博睿(Experian)的全球数据实验室(Global Data Labs)首席科学家Shanji Xiong说,这就是为什么你必须将想解决的商业难题或需求建立在正确的分析问题上。