BCG的数据表明,中国经济当今的转型之当中,服务的价值在医疗、航空、能源以及有一些机械制造等行业领域都有体现,在未来,他们都将走上以服务成长拉动增长的路径。所以制造业的转型对于整个GDP的贡献也由此成为重要的话题。
GE本身也是一个制造型企业,但这个百年老店也需要思考如何在新的国际竞争当中寻找突破创新之路。GE的工业互联网在2012年来到中国,而这个战略最早在五年前被提出,因为制造业本身面在寻求新的增长点方面走进了一个困境。在GE超过1000多亿的营收和160亿美元的纯利润当中,75%来自制造。但由于客户市场和全球环境的变化,GE需要找重新思考如何服务于全球各行业的客户。所以GE就提出了工业互联网的概念,从根本上讲,就是要把人与机器,机器与机器之间通过数据无缝连接,通过海量数据找到运营当中的瓶颈,降低成本,提升效率,从而进行整个核心竞争力的转型。
工业互联网同中国工业的智能化在中国的结合恰逢其时,这主要源于三个条件:经过20年的信息化建设,中国积累了很好的基础设施;同时中国目前的制造业的转型上升为国家战略之一,迫切需要一些好的信息化手段、管理理念、创新来推动实现这一目标;最后,人才储备也已经达到一定水平。
3、资产优化与运营优化
在制造业领域,工业互联网在实现工业智能化主要着力于资产优化和运营优化。资产优化是基于一个事实,亦即制造企业的重资产特性。目前重资产企业最重要的关切就是产能过剩的挑战,如何优化资产效率,提升资产的利用率,同时为客户带来一些关键的增值服务,通常也被衍生为装备服务业。其次,是运营优化,中国企业所在的是相比德国提出工业4.0,我们还处在2.0甚至更粗放的阶段。管理粗放,机能低下,信息化基础薄弱等等,都是现在制约制造业发展的重要问题。所以如何使运营优化让我们在岗的工人、管理人员,能够和管理规章制度结合提升我们的效率,这是工业互联网的着眼点,也是中国工业企业转型迫切需要解决的,资产的优化、运营的优化。
目前中国有很多离散型的工厂,例如家电,电子类产品制造商,资产优化、对这些企业而言运营优化有重要的意义。而整个智能化有三个不同的层次:第一,经由传感器驱动的自动化。第二,实现全工厂级别的自动化。第三,包括供应链,供应链上下游的优化。
从实施角度,要实现这三方面的优化要经过四个阶段,第一阶段,在没有数据的情况下我们往往有盲人摸象的感受,就像你坐在军中但缺乏前线汇报,这种作战毫无智慧策略可言。所以数据化是非常重要的前提,大部分企业的决策和管理是基于经验,哪怕有一些数据,也是局部不及时的,甚至是错误数据,这都会直接影响到最终结果,所以全局数据的采集是非常关键的。有了数据之后我们下一步希望可视化,所以在GE的智能工厂当中我们推出了数字链和数字双胞胎的概念,通过信息可视化手段通观工厂制造全流程,让我们对生产力、生产资源、生产效率有了解。随之而来的是控制,比对管理目标实施自动化、智能化控制,在流程控制、资源控制、物料控制等等,同时与制造工艺无缝相结合。最后一个环节是我们最期待的环节,也是价值释放的部分,就是实现优化,基于全局数据基础上我们可以实现预测,能够对资源,对于市场,对于客户的需求的预测性的指导下我们进行优化。
这四个阶段就是刚才我们说互联网在智能工厂的一个体现,说起来简单,但是做起来确实是很困难的。纵观中国的产业发展,工业和基础设施还处在由硬件转向软硬件结合的过渡当中,据统计,2014年我国数字化研发设计工具普及率已达54%,关键工序数控化率达到30%。不过较发达国家,中国离互联互通,软硬件结合的工业体系距离还很远。目前,我国高端传感器、智能仪器仪表、高档数控系统、工业应用软件等市场份额不到5%。
目前GE所提供的工业互联网方案,最直接的价值就是帮助客户实现零意外停机时间,目前GE每天监测和分析来自1000万个传感器的5000万项元数据,这些数据涉及资产价值达到万亿美元。基于Predix的APM帮助客户将海量数据转化为准确决策,及时、主动地确保资产安全、帮助设备更好地运行、消耗更少的燃料、更高效地部署服务,并最大限度地减少意外停机时间。 更多APM解决方案和服务将有利于资产所有者和运营商降低维护成本和运营风险,同时提高可靠性。获得“可完全预测的资产”对任何机构的都是终极目标。对于尚不成熟的机构来说,这似乎是一个无法实现的目标。但随着资产运营者逐步接受这一观念,它所带来的诸多益处证明这一投资是值得的,APM将是实现资产预测性的根本基石。