同时,森古普塔表示,当今云计算的低成本意味着“你真的可以做那些以前从来不可能实现的的事情。”
6.机器算法将取代人类分析
森古普塔认为在分析大数据方法有一个有趣的二分法。“有人说,解决这个问题需要成千上万的数据科学家来分析解决,随后,又有人说,采用机器学习就可以做到这一切。这将是完全自动的。”
但是,桑古塔并不认为这些都是合适的解决方案。“没有足够的数据科学家,成本将快速上升。”他说,“此外,企业用户有多年的域名登录经验,并有着对他们业务的直觉。当你请来一个数据科学家,并认为他会搞定这些工作,并告诉你该怎么做。这实际上创造了一个确切的错误,数据科学家们往往无法无法足够了解企业的业务。”
“完美”的数据科学家,是那些准确理解具体业务如何运作,以及其数据是如何工作的,这是一个误区。森古普塔说,“这样的人根本不存在。”
在现实中,森古普塔说,“大多数数据科学项目实际上没有得到实施,因为它是如此艰难,需要几个月得到完成,而当它完成的时候,你所关心的问题是已经陈旧过时了。”
但是,也有过于依赖机器学习问题。“机器学习只是给出一个答案,但并没有解释。它告诉人们该怎么做,而不是为什么要那样做,”他说。“人们不喜欢别人告诉他该怎么做,尤其是神奇的机器。”他说,其关键是不只是答案,而是其解释和建议。
一方面,他说,数据科学家将变得越来越专业化,而这是真正困难的问题。“想一想各机构和企业开始建设了数据处理部门和一些处理部门。世界500强企业也有数据处理部门“或数字加工部门。但他们基本上变成了Excel,Word和PowerPoint。”尽管如此,人们仍然是数据和数字处理方面的专家。
“如果我去摩根士丹利,相信我,那些数据处理和数字处理方面的专家仍然存在。他们只是有着不同的名称和不同的工作,但在真正的情况下,这些人仍然存在,但80%-90%的专家已经转移到Excel,Word和PowerPoint方面,这是全球在大数据方面应该发展的主要原因。”