2017将至,大数据准备好了么?

去年,大数据市场完全围绕Hadoop生态系统周围的技术。从那时起,重心一直是通过已证明增加收入、提高生产力和降低风险而带来投资回报的使用场合,“将大数据切实利用起来”。现在,大数据继续高奏凯歌。明年我们预计会看到更主流的公司采用大数据和物联网,大中型企业保守和怀疑的企业组织会开始一头扎入其中。

与几年前我们刚开始接触Hadoop时相比,数据融合会来得更重要。通过高级分析平台,结合社交数据、移动应用程序、客户关系管理(CRM)记录和购买历史记录,这让营销人员得以通过发现当前和未来购买行为方面的隐藏模式和宝贵信息,从而洞察未来。

自助式数据分析的普及,加上云计算和Hadoop的广泛采用,正在整个行业带来变化,许多公司会抓住这一形势,或者无视变化、因此面临险境。实际上,工具仍在出现,而Hadoop平台承诺的还没有达到公司缺少不了它的地步。

下面是明年将塑造大数据行业的五大趋势:

物联网(IoT)

公司日益期望从所有数据中获得价值;制造、销售和支持实物的大型工业公司将与其“物件”连接的传感器接入到互联网。企业组织将不得不改动技术,以便与物联网数据衔接起来。这在数据治理、标准、健康保障、安全和供应链等方面带来了无数新的挑战和机遇。

物联网和大数据是同一枚硬币的两面;数十亿与互联网连接的“物件”将生产大量数据。然而,这本身不会引发另一场工业革命,不会改变日常的数字化生活,也不会提供拯救地球的预警系统。来自设备外部的数据才是企业让自己与众不同的方面。结合上下文来捕获和分析这种类型的数据为公司带来了新的发展前途。

研究表明,相比计划维修,预测性维护最多可省下12%的成本,因而使维护成本降低30%,将设备故障造成的停运时间缩短70%。对于制造工厂或运输公司来说,从数据驱动的决策获得这些结果,意味着在改进运营和节省成本方面大有机会。

深度学习

深度学习是一套基于神经网络的机器学习技术,它仍在发展之中,不过在解决业务问题方面显示出大有潜力。它让计算机能够从大量非结构化数据和二进制数据中找出感兴趣的内容,并且推导出关系,而不需要特定的模型或编程指令。

这些算法的源动力主要来自人工智能领域,人工智能的总体目标是模拟人类大脑观察、分析、学习和做决定的能力,尤其是处理极其复杂的问题。深度学习方法的一个关键概念就是数据的分布式表示,因而可以对输入数据的抽象特征实现大量的组合,从而可以紧凑表示每个样本,最终获得更丰富的泛化。

深度学习主要用于从大量未标记/未监督的数据当中学习,因而对于从大数据中提取有意义的表示和模式颇具吸引力。比如说,它可以用来识别许多不同类型的数据,比如视频中的形状、颜色和对象,或者甚至是图像中的猫,就像谷歌研制的一个神经网络在2012年所做的那样。

因此,企业可能会看到更多的注意力投向半监督式或未监督式训练算法来处理进入的大量数据。

内存中分析

不像常规的商业智能(BI)软件对存储在服务器硬盘上的数据运行查询,内存中技术查询的是载入到内存中的信息,这可以通过减少或甚至消除磁盘输入/输出瓶颈来显著提升分析性能。就大数据而言,正是由于TB级系统和大规模并行处理,让内存中分析技术更令人关注。

在现阶段,大数据分析的核心其实是发现数据。要是没有毫秒级延迟,面对数百万次/数十亿次的迭代,运行迭代以查找数据点之间的关联就不会成为现实。在内存中处理的速度比磁盘上处理要快三个数量级。

2014年,Gartner创造了HTAP(混合事务/分析处理)这个术语,描述这样一种新技术:让事务和分析可以在同一个内存中数据库中处理。它让应用程序领导人通过更强的情境意识和改进的业务敏捷性来进行创新,然而这需要彻底改变原有架构,还需要相应的技术和技能,才能使用内存中计算技术作为赋能者(enabler)。