驾好“三套车”,打造大数据产业的竞争力

——在商业模式上,硬件和软件联动的两种商业模式并举并行,为大数据产业发展带来新机遇。

为了更广泛地覆盖数据生产加工流程,扩大其产品和服务在数据生命周期中的作用范围,大数据产业的参与企业逐渐打破硬件和软件的产品界限,形成了“硬件带动软件”和“软件带动硬件”两种新型商业模式。例如,浪潮推出的SmartRack系列整机柜服务器,针对深度学习应用、社交数据存储、热数据处理等不同数据处理场景制定了多种混搭架构方案,以一体机的方式实现硬件设施和软件管理的集成交付。阿里巴巴发布的数加平台率先探索以“软件带动硬件”的市场营销模式,通过提供数据计算引擎、机器学习等开放服务,将阿里云的计算、存储等多种资源有机地组织在一起形成解决方案,从而有效拓展阿里云在实际生产环境中的部署和推广途径。

驾好前进道路上的“三套车”

尽管中国大数据产业已经在主要环节完成了初步布局,但相比在这一领域的先行者“短板”仍有不少。对此,中国大数据产业需要充分认清自身存在的不足,在强化数据质量管理、把握好数据技术过渡期机遇的同时,积极探索适合自己的新型商业模式。

首先,把握源头,强化数据质量管理。目前数据资源开放在开放范围、开发利用方式、数据可用性等方面仍存在局限性和不足。截至2016年5月,全国共有9个省份/直辖市开通了区域级数据开放网站。虽然与去年同期相比,平台数量有所增加,但大多数地区仍面临数据开放格式不一致、可读性较差、更新频率较低等实际问题。部分地方或第三方数据交易平台在流通效率、质量管理方面良莠不齐,特别是不同行业数据维度不统一、语义不协同等共性问题制约了交易市场的规模化发展。为推动大数据产业发展,需要进一步把握好数据源头,推动各方不断加强自身数据能力建设,做优存量、做大增量,加快完善相关配套措施确保隐私和信息安全。同时鼓励参与主体共同推动数据标准化进程,健全数据交易规范,探索数据资产定价机制,以各行业多样化应用需求撬动数据交易市场巨大发展潜力。

其次,细化分工,关注数据技术过渡领域。与美国等数据产业发达国家相比,我国大数据产业的短板仍较明显,数据加工处理服务、数据库技术和通用数据分析工具等基础性通用数据技术差距较大,同时市场主体数量少、自主知识产权把控能力低等问题导致未来发展动力不足。传统行业和企业对数据分析应用具有巨大需求,但其数据资源多以非结构化为主。原有结构化数据和新增非结构化数据之间的互访问操作与融合管理成为技术领域的新挑战,同时也是抢占未来主流市场的关键技术点。目前,美国等技术领先国家的产业版图已完成了技术过渡领域的初步布局,我国产业参与主体也应考虑进一步细化市场分工,形成专业性强、衔接紧密的产业新生态,并积极加大过渡时期的技术研发力度,在数据过渡期实现与发达国家的同步。

最后,强化合作,探索新型商业模式。大数据产业是技术密集型产业,同时也是业务驱动为主的实用型产业。针对数据分析和运用过程中需要解决的共性基础问题,欧美等数据产业发达国家通常采用以开源社区先行的开放合作模式,采用“众包”思想不断完善系统架构和产品服务功能,提供更为通用和普适的技术解决方案。经过大量企业在生产实践中的优胜劣汰式自由选择,不断成熟和完善的开源产品逐渐从免费提供向企业化盈利的商业模式进行演变。相比之下,中国数据产业的参与主体在开源社区中的贡献仍然较低,企业间合作、国际间合作的参与热情有待提高。对此,中国数据产业应充分借鉴国外企业的成功经验,以开源产品和服务为基础,提供定制化和深度支撑的新型商业模式,在此基础之上为中小企业和初创企业在大数据产业中发挥作用而提供新的思路。