大数据框架对比:Hadoop、Storm、Samza、Spark和Flink

Storm背后的想法是使用上述组件定义大量小型的离散操作,随后将多个组件组成所需拓扑。默认情况下Storm提供了“至少一次”的处理保证,这意味着可以确保每条消息至少可以被处理一次,但某些情况下如果遇到失败可能会处理多次。Storm无法确保可以按照特定顺序处理消息。

为了实现严格的一次处理,即有状态处理,可以使用一种名为Trident的抽象。严格来说不使用Trident的Storm通常可称之为Core Storm。Trident会对Storm的处理能力产生极大影响,会增加延迟,为处理提供状态,使用微批模式代替逐项处理的纯粹流处理模式。

为避免这些问题,通常建议Storm用户尽可能使用Core Storm。然而也要注意,Trident对内容严格的一次处理保证在某些情况下也比较有用,例如系统无法智能地处理重复消息时。如果需要在项之间维持状态,例如想要计算一个小时内有多少用户点击了某个链接,此时Trident将是你唯一的选择。尽管不能充分发挥框架与生俱来的优势,但Trident提高了Storm的灵活性。

Trident拓扑包含:

流批(Stream batch):这是指流数据的微批,可通过分块提供批处理语义。

操作(Operation):是指可以对数据执行的批处理过程。

优势和局限

目前来说Storm可能是近实时处理领域的最佳解决方案。该技术可以用极低延迟处理数据,可用于希望获得最低延迟的工作负载。如果处理速度直接影响用户体验,例如需要将处理结果直接提供给访客打开的网站页面,此时Storm将会是一个很好的选择。

Storm与Trident配合使得用户可以用微批代替纯粹的流处理。虽然借此用户可以获得更大灵活性打造更符合要求的工具,但同时这种做法会削弱该技术相比其他解决方案最大的优势。话虽如此,但多一种流处理方式总是好的。

Core Storm无法保证消息的处理顺序。Core Storm为消息提供了“至少一次”的处理保证,这意味着可以保证每条消息都能被处理,但也可能发生重复。Trident提供了严格的一次处理保证,可以在不同批之间提供顺序处理,但无法在一个批内部实现顺序处理。

在互操作性方面,Storm可与Hadoop的YARN资源管理器进行集成,因此可以很方便地融入现有Hadoop部署。除了支持大部分处理框架,Storm还可支持多种语言,为用户的拓扑定义提供了更多选择。

总结

对于延迟需求很高的纯粹的流处理工作负载,Storm可能是最适合的技术。该技术可以保证每条消息都被处理,可配合多种编程语言使用。由于Storm无法进行批处理,如果需要这些能力可能还需要使用其他软件。如果对严格的一次处理保证有比较高的要求,此时可考虑使用Trident。不过这种情况下其他流处理框架也许更适合。

Apache Samza

Apache Samza是一种与Apache Kafka消息系统紧密绑定的流处理框架。虽然Kafka可用于很多流处理系统,但按照设计,Samza可以更好地发挥Kafka独特的架构优势和保障。该技术可通过Kafka提供容错、缓冲,以及状态存储。

Samza可使用YARN作为资源管理器。这意味着默认情况下需要具备Hadoop集群(至少具备HDFS和YARN),但同时也意味着Samza可以直接使用YARN丰富的内建功能。

流处理模式

Samza依赖Kafka的语义定义流的处理方式。Kafka在处理数据时涉及下列概念:

Topic(话题):进入Kafka系统的每个数据流可称之为一个话题。话题基本上是一种可供消耗方订阅的,由相关信息组成的数据流。

Partition(分区):为了将一个话题分散至多个节点,Kafka会将传入的消息划分为多个分区。分区的划分将基于键(Key)进行,这样可以保证包含同一个键的每条消息可以划分至同一个分区。分区的顺序可获得保证。

Broker(代理):组成Kafka集群的每个节点也叫做代理。

Producer(生成方):任何向Kafka话题写入数据的组件可以叫做生成方。生成方可提供将话题划分为分区所需的键。

Consumer(消耗方):任何从Kafka读取话题的组件可叫做消耗方。消耗方需要负责维持有关自己分支的信息,这样即可在失败后知道哪些记录已经被处理过了。

由于Kafka相当于永恒不变的日志,Samza也需要处理永恒不变的数据流。这意味着任何转换创建的新数据流都可被其他组件所使用,而不会对最初的数据流产生影响。

优势和局限

乍看之下,Samza对Kafka类查询系统的依赖似乎是一种限制,然而这也可以为系统提供一些独特的保证和功能,这些内容也是其他流处理系统不具备的。