如何寻找并发掘地理大数据的价值?

所以,当你吐槽4G信号不给力的时候,不妨拿出这张图,看看你在哪个位置,在用哪家运营商的网络服务。

2. 为商业服务,大数据可以帮助星巴克开下一家店

地理大数据的商业应用,则可以直观体现在店铺选址上。我们就拿星巴克如何开下一家店这个命题来举例。

首先,要判断星巴克此前的选址偏好以及消费人群结构,这样就能了解你会在哪儿遇见星巴克,又能在星巴克遇上哪些人。

举个栗子,交通便利的路段容易获得星巴克青睐,而消费人群中又有20%的商旅乘客。

还记得之前提到的机器学习吗?在星巴克选址上,我们能不能通过机器学习的方式去获得选址的解决方案呢?

通过机器,以北京的星巴克门店为例,根据不同交通工具的通勤时间情况,我们找到了星巴克门店的辐射范围,也能比较出各家门店辐射范围的重叠(注:以下展现的是演示数据)。

4

然后我们通过机器学习,发现了星巴克的“朋友圈”(DT君注:也就是星巴克之前开的店,老是跟哪些其他品牌店铺在一起)。

这个“朋友圈”的一些秘密,通过这张结构图可以体现出来(注:以下是演示数据,不是真实分析结果):

5

上图中,以星巴克为中心的朋友圈,连线越粗,关系越亲密,比如肯德基与麦当劳,两者紧密相连,各自的产品也颇为接近。而麦当劳和肯德基,和星巴克之间的关系则是比较弱的。相比较之下,同样被人熟知的咖世家(COSTA),无论从客群构成到店铺规模,再到产品定位都与星巴克极为相似,两家极有可能出现在邻近的地方。

那么按照大数据的学习方式,如果我看到一家COSTA咖啡店附近没有星巴克,是不是这里就可以开一家呢?

不过,GeoHey开发出的地理大数据产品,目前并不直接面向市场终端消费者,作为为企业决策提供地理大数据服务的机构,我们的产品是面向B端。这就意味着,从这座金矿中淘到的金,普通消费者要感受到地理大数据的价值,至少需要一道其他的“加工手续”。

3. 避免看病难,大数据提供一些解决方案

第三个案例,我们来看看大数据怎么提供帮助解决民生问题的方案。

看病难一直是个困扰多数人的问题。如何破解这个问题?

我们采集了全国三甲医院的数据,包括就医数据、医生资料情况等。根据这些采集的数据进行分析,我们能够得出这些结论:

6

首先是三甲医院的地域分布不均,全国80%的三甲医院被20%的城市瓜分。和三甲医院分布不均的还有教授医师的数量,20%的城市占据了全国85%的教授医师资源。其实,大家普遍吐槽的看病难其实就是集中前往大城市的三甲医院寻找教授医师看病造成的。

另外,结合就医数据,我们还可以得出一些普遍性的结论,其实在一个城市里头,忙碌的科室仅占全部科室的29%。在同城的医生里头,仅有22%的医生会非常忙碌。

要避免看病难,如无大病,不一定要前往三甲医院找教授医师就诊。