2017年,AI创业者要回归商业规律

 那么我们怎么看待这些转变?

我们从数据可以看到,有很多AI的项目估值很高,甚至说整个人工智能领域在去年有比较大的泡沫。随着IPO的提速、项目不断随着时间演进,高估值的项目退出将会面临巨大挑战。我们可以通过A股人工智能概念上的项目,以它作为尺子,看一下它的营收、商业模式以及PE、PS,实际上你就会看到,人工智能现在离全面商用还是很远的,也还远没有到全面盈利的阶段。

7

截止到2016年Q3的一个数据,以科大讯飞为例,全年科大讯飞营收在33亿左右,然后净利是4.9亿,我们以科大迅飞作为一个缩影看行业,那么跟科大迅飞类似的某些语音公司主营业务还没有盈利,整体还是在烧钱的状态。这么高的估值,投资人要以一个什么样的倍数或者期望去退出?这是一个很严肃的问题。

所以我们判断,在IPO提速以及高估值的双重作用下,我认为2017年AI行业将会出现第一波洗牌。那些商业模式长时间未被验证,估值又很高,烧钱又很凶的项目将会遭遇遭遇无人接盘、无法退出的风险。

最后,分享几个我们对于这个行业的整体观点,这些观点来自于我们对AI领域创业项目的长期跟踪、摸索、思考与沉淀。

  第一,算法壁垒将会逐渐降低

在去年的时候,如果你有一个比较好的科学家和比较好的算法分析团队,可能很容易拿到天使轮甚至是A轮以前的融资,这是肯定的,包括我们去年也有很多这样的机会,当时很多项目我很犹豫,不知道它未来能长成什么样。团队很好,背景很好,很纠结。随着行业演进,随着你关注度越来越多、做得人越来越多,不断有科学家进入这个领域,算法和壁垒一定会慢慢降低,这是规律。

第二,项目在垂直领域要有纵深能力

除了算法之外,创业团队需要有行业纵深能力、市场实践能力,如果没有这些能力,项目落地起来还是做非常困难,非常单薄,可能会面临许多危机。

第三,解决需求更重要

在落地的应用场景中,解决需求比起算法创新来说更为重要,需要的能力也更为全面,创造的价值也,更容易实现。所以,核心的问题是,创业项目的产品,能够解决什么样的需求。

 第四,整体解决方案更有价值

软硬件的整体解决方案比单独算法更具价值,硬件项目比软件项目壁垒高一点,这是我们观察到的一个现象。所以说整体解决方案是极其重要的。比如说,在行业初期,给机器人提供核心的部件,光有算法或硬件是不够的,光提供软件,客户还要找硬件,光提供硬件还要找软件。最好的能力是提供整套的软硬件解决方案,有这个能力,还是有一些机会。

第五,数据资源更稀缺

垂直领域的数据资源比单独的算法更稀缺,能不能搞到别人搞不到的带标记的数据训练集,比如在医疗领域,这个对于早期训练模型极其重要。

第六,ToB领域将率先落地,ToC落地还需5-10年

人工智能将在ToB领域率先落体,C端还很遥远。只有在B端相对成熟,能够为C端低成本解决需求的时候,C端才有落地的机会。

 第七,AI领域创新创业机会依旧很多

在这个领域,还有有很多创新机会,我们也在进行积极地创建和投资。

而对于AI创业公司来说,首先要考虑的问题是如何活下去,下面是4种生存方式:

寻找被并购机会;

加强生态合作,多与合作伙伴一起整合解决方案,形成高壁垒;

管控现金流,高效运营;

能拿钱就拿钱,不要一味追求高估值;

随着人工智能行业的发展,我们过多地关注了“人工智能”概念本身,而相对地弱化了创业规律。我相信在2017年资本和行业发展地驱动下,人工智能将会趋于理性发展,我们也欢迎那些真正回归创业规律的AI创业者与我们共同进步,改变未来。