第一个挑战是大数据对人性假设的挑战。
管理学自诞生开始,就以人为对象,以人性假设为前提不断演化出各种理论。第一个提出科学管理理论的泰勒假设人是“经济人”,后来梅奥假设人是“社会人”,西蒙则构造了“决策人假设”。自西蒙之后,又有了各种各样新的理论:战略管理、营销管理、人力资源管理等,基本都是以西蒙的假设为预设。
社交媒体的诞生,意味着人不再是抽象的假设,而是一种基于大数据的画像。依据社交媒体里个体行为留痕的数据,就可以对个体进行画像。可以认为,大数据令管理科学真正进入到了可量化的科学发展阶段。
我们过去经常讲,自然科学在牛顿之后发生的最重要的变化,就是它可以用数学公式来描述一个复杂的物理现象或者复杂的自然现象。我们通常认为社会科学在某种意义上有很大的艺术成分,就是因为它可被精确计算得不够。今天,通过大数据对人进行定量化描述,必然会引发管理科学的飞跃。
第二个挑战是数字化虚拟世界里如何进行管理实践
从人类文明诞生起,人类就在构造一个虚拟世界。文明,就是人类用可沟通、可理解的方式构造了一个与现实世界对应的虚拟世界。构造这个虚拟世界的方式,并不仅仅是文字,还包括音乐、绘画、戏剧、电影等。
由于量子力学的发明,人类进入了电子时代;计算机的发明,让人类又进入了数据时代。电子时代,我们进行了模拟信号的处理,把声音和图像用电子的方式记录下来。计算机的发明,需要我们把模拟信号进行ADDA转换,转化成数字信号。虚拟世界就变成了数字化虚拟世界。这是非常有意义的变化,因为数字化虚拟世界更便于计算。
通过计算,我们可以用拓扑的方式去重构现实世界(拓扑学是数学术语,它只考虑物体间的位置关系而不考虑它们的形状和大小)。这种方法可以使人在现实与虚拟中间通过一个旋转门,进而优化现实世界。比如交通中的一些难以解决的问题,通过大数据不断优化方案,反复再现结果,最终解决现实中的难题。
最近热炒的人工智能(AI),预示着人类新的文明里程。阿尔法狗打败柯洁后,聂卫平评价说人类的围棋选手最高是9段,阿尔法狗是20段。阿尔法狗强大的地方是它的计算速度比人反应快。需要解释的是,今天的AI并没有像很多媒体所描述的那样功能强大,它只是能在一个特定的、复杂的、可重复的工作环境里比人做的更好。
计算机的算法不是今天才有的,上世纪90年代就已经发明了,为什么那个时候计算机没有自我学习能力呢 因为在当时的条件下,计算机的速度还不够快,数据量也不够多。计算机高速运转之后,所生成的数据量是前所未有的,甚至每天产生的数据量都是以前的总和。大数据时代要求计算能力越来越快,存储能力越来越强。今天我们任何一台智能手机都比当年的英特尔“奔腾”速度快上千倍。我们现在使用的神经网络计算方式,也更具有自学习的能力。
在这样一个自学习、数字化虚拟世界里,管理实践者该如何去做管理
第三个挑战是大数据对营销学的挑战。
营销学是管理学的一个重要分支,包括四个基本策略的组合,即大家经常说的产品、价格、渠道、促销4P理论,但在今天以客户为中心的、定制化的生产方式下,4P理论还有效吗
例如小米手机,它通过互联网征求客户意见——客户需要一个什么样的手机,什么样的外观,什么样的性能,什么样的价钱,用什么样渠道传递给客户 在这样的环境下,4P理论是否需要进行修正
再举一个例子,医药领域现在有精准医疗、靶向治疗。每个人得感冒的时候,感染的细菌或病毒都不是完全一样的,过去使用广谱抗生素,抗菌谱比较宽。现在出现的靶向药,通过培养患者感染的细菌或病毒,反向制出一种新的抗生素,非常精准地进行针对性的治疗。
我们最近在策划一家公司,就在对传统的医院管理系统HIS系统进行颠覆性的挑战。HIS系统是基于财务的流程建立的,只是提高工作效率,对医疗水平的提高没有帮助。我们设计的新管理系统将以电子病历为数据资源,通过数据分析和重构,就可以进行药物的发明、保险产品的设计和医疗方法的优化。我们和国家卫生计生委合作,把全国三四百万肿瘤患者的数据收集回来,进行数据研究,发明新药物,提高治疗效果。