5种大数据分析方法帮助银行重拾客户信心

我们正处在经济下滑的环境中,这是显而易见的。

大数据分析方法

银行的问题总是循环往复地出现。打开任何一家新闻网站或者报纸,我们都能看到一篇又一篇关于银行问题的报道。欺诈、英国退欧引发的不良影响、各式各样的金融危机和违规行为、事实描写中掺杂着谣言与暗讽……好像银行总是在向公众粉饰自己真正在做的事情。

这也就不难解释虽然这个行业的发展十分强劲迅猛,也是过去几百年间社会不可或缺的一部分,但人民群众却依然对银行业界充满了怀疑。银行的客户们更在意的是安全性违规、服务范围没有增加还有他们糟糕的服务质量;但有些银行人士却仰头看天,对这种担忧表示了蔑视。

赢回顾客的心

为了赢回客户的信心,在数字化变革中维持自己的地位,各个银行(以及整个银行业)都必须认真考虑自己传统的业务模式和运营方法。一些银行已经开启了自己的数字化转型旅程,采用了新兴技术并利用现有的数据源来开发出更好的产品和服务。大数据和分析技术是其中的关键,但这两者的潜力都没有被发挥到极致。银行必须采取一些切实手段,改变客户认知的障碍,获取数据驱动的业务机会。

支付数据

首先从最被低估的一种数据集说起。支付数据能够反映出每个客户的大量信息,例如他们付了多少钱、购买了什么、收款方是谁、参与业务的银行是哪家、交易的时间、地点等等信息。事实上,一个人的购买交易记录比他/她在社交媒体上的表现更能说明这个人是谁。交易数据的获取方式非常简单,但却可以精确描绘出一个人的生活方式、发现哪些公司参与到了商品的供应链中、并绘制出根据时间和地点而变化的消费曲线。与此同时,虽然客户本身的数据并不像交易数据一样多变,但在银行系统中却可以将客户数据和其他资料进行结合,例如交易数据、信用卡历史数据等,以此加强分析、推出成功的“次优选择”。

了解金融技术

银行只需要采取一些金融技术的思维,尝试这些简单而实用的技巧,在短期内就会获得重大的改变。

利用推荐引擎相关的数据 – 可以采取针对少部分人进行试验的方法进行。根据喜好对消费者进行分组、根据消费者对产品进行分组、再根据模式的相似程度对交易数据进行分组。每个人都想着要建立起独一无二的“单一客户视图”,但你知道吗,一个连接起2-3个产品组合的“局部客户视图”对于刚开始起步的企业开始就已经足够用了。

更关注交易及行为数据 – 交易数据更能帮助银行了解客户流失前发生过哪些事情,它能揭示出银行产品组合间相互的网络关系,客户对客户、客户对商户、公司对公司、产品对产品……了解这些以后银行下一步能做什么呢?

欺诈与合规 – 就像之前我提到的,银行异常熟练于管理合规和避免欺诈,但这整个行业都需要开展更好的文本分析工作,利用网络行为发现高风险的行为模式。例如“谁点击了哪些网站后就出现了欺诈行为”等洞察有时非常具有启发意义。现在,一些公司已经可以将网志数据和支行数据进行匹配,发现客户在网上和实体银行内的行为差异。

服务体验 – 在实体经营的年代里最重要的是“位置、位置和位置”;而在现在这个数据化年代里最重要的却变成了“客户、客户和客户”。利用事件数据发现造成问题的流程,再为客户们解决这些问题流程。呼叫中心记录也是一个隐藏的数据洞察来源。要分析这些呼叫记录的语义、发现重复出现的问题并不复杂,银行可以从这些投诉记录中获取新产品开发的灵感,只要他们想这么做的话。

改善移动端体验 – 很多银行都有自己的移动端APP但这些应用的功能通常都集中局限于辅助交易、转账和账户管理上面。但如果可以把银行的APP像Mint等其他APP那样,为客户提供更酷的预算管理、清晰地展现财务状况甚至是提供更有帮助的建议呢?银行可以针对移动运营商进行分析,发现数据中隐藏的模式(例如地点、客户属性、IP地址、移动上网等数据),了解带来客户满意的“指迹”。