这主要是由于客户不了解电信运营商的套餐类型,只是听说其他运营商的长途套餐更便宜造成的。那么客服人员就需要了解这类客户的需求,从而提供更合理的套餐类型。
11.客户关系网:
客户的亲友圈、工作圈和兴趣圈的信息对客户管理、营销和产品开发有重要的意义。比如,可以很好地定位客户所处的自然生命周期。如果是婚恋中的人,可以推荐与其品位相似的产品信息。而且通过对客户关系网络结构的分析,可以明确网络中的重要节点,这对关键人营销有重大意义。
12.流失客户时间判断:
通过对已经流失客户的存续时间进行分析。一方面可以预判现有客户流失的高危期,另一方面为提高不同类型客户的存续时间提供技术支持。
13.流失客户类型判断:
对流失客户的细分可以对改进产品和服务起到重要的指导作用。
结语
从上文的内容可以发现,数据挖掘主题可以归纳为营销、信用与违规识别。其中特别要提到的是,信用风险建模用到了数据挖掘中所有的方法,该模型是数据挖掘中的明珠,是目前方法论最完善的,其它主题建模往往只是该模型的简化版,掌握信用风险建模的流程才有可能站在巨人的肩膀上。
另一方面,信用风险管理不限于金融机构,只要涉及到交易行为就存在信用风险。高水平的信用风险管理可以刺激消费额并提高客户满意度,进而提高忠诚度。可以说学好信用风险建模,在商业数据挖掘领域中无往而不破。