大数据行业图谱(3):为什么大数据应用公司这么贵?

一方面,国外初创公司分工明确,多数公司专注于一个细分领域,合作共赢是主流思想。而国内大数据公司都想自己做整条业务线,因此竞争非常激烈。

另一方面,国外中小企业付费意愿明显强于国内,这使得国外细分领域的市场空间远远大于国内,初创公司可以依靠一众小客户做到几亿营收,支撑其上市。国内公司就很难依靠一个细分领域的客户支持其营收增速,必须要扩张其业务线才能有足够成长空间。

总而言之,国内大数据公司要想成长为独角兽企业,难度远大于国外,数据源、数据技术和数据应用三个环节都要有独特竞争力。

第一, 优质数据源。

大多数大数据公司不具备数据源,主要依靠采集其他企业的数据。像TalkingData为APP软件提供广告监测以及数据统计的业务,从而采集到移动设备数据。因此,有机会触及优质数据源对大数据公司非常重要。

从行业来看,银行、电信、政府的数据价值很高,这类用户数据真实性较高,能反映用户实际需求,而互联网数据中记录大量用户无序行为,有价值数据密度较低;从设备来看,移动端的数据价值要大于PC端,因为智能手机的普及使得移动端用户行为数据更加活跃,同时可以追踪用户地理位置。

第二, 技术积累。

单纯依靠数据源并不能构筑竞争壁垒,毕竟这些数据并非大数据公司所有,躺着挣钱的事情是运营商等数据源拥有方。除互联网客户外,大数据公司都很难将企业客户的原始数据提取出来,只能获取数据标签。

因此,大数据公司在数据处理上要有很深的积累,特别是在数据清理环节,去除噪音,保留有价值的数据,这部分工作对人力依赖较重,需要数据科学家去识别有效数据。

第三, 行业标杆客户。

有些时候,服务几个行业标杆客户的价值要远远超过一支数据科学家团队。大数据最终还要是落地,数据与场景应用结合发挥价值,既需要处理数据的技术,又具备足够的行业经验,准确找到业务痛点。

行业标杆客户面对的业务问题一般都会是最前沿、最具参考价值的,服务这类客户会让大数据企业成长,加深对所服务行业的理解,这一点是大数据公司依靠自身无法提升的,这不是技术上的突破,而是经验上的积累。

第四, 数据互联。

经过这几年对大数据的探索,企业和大数据公司都发现,单一数据源价值度有限,集合多渠道数据,实现数据融合能产生更大能量。例如,将电信数据放在银行风控业务场景,提高了欺诈行为识别率。

因此,很多公司都在提供DMP服务,将自己的第三方数据源与企业客户的第一方数据源对接,但实际效果并不理想。

原因主要有以下两点:第一,双方的数据源重合度不高;第二,多账户归一做得不好,解决不了同源跨屏问题。前者是因为数据与应用场景不匹配,后者主要是在技术积累不足,数据清洗不到位。

诚然,数据互联刚刚起步,但能够打通多个重要数据源的公司最有希望成为独角兽。