谷歌表示人工智能将在数据中心运营有所作为

为了简化培训过程,谷歌公司开发了自己的专用芯片,称为张量处理单元(TPU),可以通过谷歌公司的TensorFlow软件库来加快实现机器学习模式的速度。这些芯片不仅仅用于培训DeepMind和Google Brain的模型,还包括支持Google翻译和Google Photo中图像识别的模型,以及允许公众使用Google TensorFlow研究云构建机器学习模型的服务。这些芯片的第二代产品已在今年5月的Google I/O会议上亮相,随着这些新型TPU提供的一系列功能,训练一个用于翻译的Google机器学习模型可以节省一半的时间。

Sloss说:“TPU比目前可用的技术具有巨大的性能优势。在这个时候,所有正在致力研究机器学习的厂商都是在人机大赛表演之后追逐的,这会带来一个很大的竞争优势,因为可以在某种程度上模仿一些有用的东西。”

在谷歌公司数据中心未来对TPU的推出没有作出坚定承诺的同时,他表示:“我怀疑能否将继续使TPU得到更广泛地使用”。

即使作为谷歌公司的内部人士,Sloss也承认,机器学习能力在能够并行处理大量数据的处理器背后推动的速度,以及庞大的培训数据集的可用性令人吃惊。

他表示:“在过去的几年里,机器学习的整体能力还在不断提高。我是一名棋手,如果有人三年前告诉过我,2017年世界围棋冠军将是一台电脑,我当时不会这么确定。而在三年之后,我们实现了这个目标。我很期待机器学习能在接下来的五年里为世界做些什么。”