莎士比亚说“凡是过去,皆为序章”,这句话用来形容大数据再合适不过。数据的丰富及易得,使人类有机会在众多领域使用数据全面审视,深入探索,从而带来各行各业的新发展。信息技术的厚积薄发,物理学、生物学、统计学、经济学等多个学科的融合创新,将我们一步步领进了大数据时代。过去的一切沉淀,皆是拉开新时代、新机遇的序章。
大数据的挖掘就像是在给用户画像。先搜集用户在网络上留下的痕迹也就是数据,然后通过技术处理对数据进行分析,得出用户的特征,洞察用户的喜好,将用户的画像渐渐越描越细。
事实上,大数据在各个行业的应用已是遍地开花,下面我们将带领大家走进以下几个行业,看看它们是如何挖掘大数据价值的。
金融行业
银行的大数据应用比较广泛,主要集中在数据库营销、用户经营、数据风控、产品设计和决策支持等应用场景。现阶段,大数据在银行的商业应用还是以其自身交易数据和客户数据为主,外部数据为辅;描述性数据分析为主,预测性数据建模为辅;经营客户为主,经营产品为辅。
典型的案例有:新加坡花旗银行基于消费者的信用卡交易记录,针对性地给他们提供商家和餐馆优惠;摩根大通银行利用决策树技术,预测了按揭申请人的未来还款行为,由此极大降低了放贷风险,并增加了6亿美金的利润; ZestFinance推出基于大数据分析的收债评分(Collection Score),为汽车金融、学生贷款、医疗贷款提供一种新的评分系统,使得“一切数据皆信用”成为可能。
零售行业
目前的某些领先零售,从顾客走进商店那一刻起,其脚步、视觉移动、选择、对减价的反应,已经被密切监控。通过这一分析,商店能够决定是否需要做出改变以提高销售,例如:商品摆放位置、促销活动、装修风格、更多销售员等。
商店在不停地分析数据与顾客的会员卡的关联。例如高端零售商Neiman Marcus就建立了行为分类体系和多级会员奖励制度的体系,并将两者结合起来,来激励最富裕、最具长期价值的客户购买更多高利润率的产品。
顾客的购物清单同样可以挖掘出大量的个人信息。塔吉特公司通过对孕妇的消费习惯进行测试和数据分析,由此来判断出哪些顾客是孕妇,甚至估算出她们的预产期,在最恰当的时候给她们寄去最符合需要的优惠券。
能源行业
以丹麦的维斯塔斯风能系统(Vestas Wind Systems)为例,他们运用大数据,分析包括PB 量级气象报告、潮汐相位、森林砍伐地图、公司遍及全球的2.5万多个受控涡轮机组发回的传感器数据,来确定涡轮发电机最理想的位置,从而优化风力涡轮机布局,提高风电发电效率。这些以前需要数周时间完成的分析工作现在只需不到1 小时即可完成。正是这样一套信息处理体系赋予了公司独特的竞争优势,在提升自身营收的同时,帮助客户提实现投资回报的最大化。
对于能源行业而言,微观选址、预防性维护和绩效评估尤为重要,利用大数据可以对风电场进行全生命周期的管理和优化,使能源不断朝着预防性、预测性的方向发展,实现最高效的能量输出。
电信行业
电信作为一个垄断行业,市场的渗透率通常很高,具有潜在价值的大量承接关系数据每天以客户位置、设备交互、购买行为、在线状态、社交地图和人口统计数据的形式从运营商这里大量流过。因此,运营商具备了解客户的潜力和开发优势。西班牙电信公司Telefonica Dynamic Insights推出“智慧足迹”业务,可对某个时段、某个地点人流量的关键影响因素进行分析,并将分析结果提供给政企客户。比如可为市政委员会统计、预测各种场景下的人流量;为零售商的新店设计和选址、促销方式设计、与客户反馈等提供决策支撑。
运行商利用大数据技术,一方面可以描绘更丰满、精细的客户画像,另一方面还可以量化分解客户信息,识别客户特征与习惯偏好,对客户手机可能出现的故障、换机行为等作出预测,为客户提供定制化的服务,优化产品、套餐和定价机制,提升客户体验与感知。
医疗行业
早期,大部分医疗相关数据是纸张化的形式存在,比如官方的医药记录,收费记录,医生、护士手写的病例记录, X光片记录,磁共振成像(MRI)记录等。随着大数据时代的到来,各种医疗数据都在不同程度上向数字化转化。