思考,细数大数据风控那点事?

风险评估过程中,如果数据纬度不全,高相关数据没有被考虑进来,对风控模型是一个大的风险。信用风险评估模型缺少了重要风险因素的输入,其评估结果的偏离度就会较大,评估结果失效的可能性就很大。

 3.风险定价不够精细

量化风险管理的一个核心是风险定价,根据银行自身的风险偏好来对资产进行定价,高风险资产定价较高,低风险产品定价较低,根据风险高低来制定资产收益,RBP(基于风险定价)已经成为主流。

大多数银行过于保守,不愿意容忍较高的逾期率和不良率,对于所有信贷产品都一视同仁,严格控制逾期率和不良率水,一旦过高,立即缩紧信贷政策,严格控制贷款规模。复杂的经济环境和风险场景,以及缺少全面数据,让风险管理专家更加谨慎对待风险管理,误杀率远远大于漏放率。

实际上,不同风险的产品应该有不同的信贷风险控制指标,高收益的产品,其不良率应该比低风险的产品要高。例如利率为12%的小额信贷就可以容忍3%左右的不良贷款率,其利差收益完全可以覆盖不良贷款。对于风险较低的消费信贷,其不良贷款率也可以适当放开。在逾期和不良贷款管理中,应该按照风险覆盖程度细化资产定价,不能采用统一的风险偏好,这样才能支持消费贷款,依据风险水平,提供精细化信贷产品。

 4.风险模型的自我学习能力和数据的实时性

量化风险成为主流风险管理方式之后,银行也在思考风险评估模型的科学性。影响信用风险管理的因素很多,除了客户自身的还款能力和还款意愿,还有恶意欺诈、外界经济环境、黑天鹅事件等不可预见的因素。信用风险的评估完全依赖风控模型将会产生另外一个风险,就是模型自身学习能力和数据实效性。

好的风控模型需要具有自我学习能力,可以依据输入数据来修正模型,另外模型的抗干扰能力也需要较强,避免大量噪声数据干扰计算结果。具有自我学习能力的模型可以适应外部多种因素的变化,同时也可以自身迭代提高,抵抗外界噪音干扰。

实时有效的数据对于风险评估结果影响也很大,数据是有时间价值的,滞后的数据会影响评估结果,不能反映实时风险变化情况。实时的数据录入和动态信用风险评估现在对银行是一个巨大的挑战,一个月进行一次的风险评估并不能实时反映信用风险变化情况,银行需要找到一个好的方法来建立动态风险视图,不仅仅是信用风险管理,其他的风险管理方法也要向实时数据录入和风险实时评价方向转变。

 5.外部风险来源的多样化

现在的信贷市场,不再是银行一家的市场。互联网金融企业的崛起,让客户更加容易获得贷款,同时也加大了银行管理信贷风险的难度。

例如一个客户在银行环境内部授信额度是10万,但是其在外面的互联网金融公司、典当行、民间借贷机构,都有借贷行为,可能总计借贷规模远远超过10万元。客户的高额借贷增加了违约风险,这些不在金融企业内部的借贷行为,银行无法了解,也无法实施有效的信贷风险管理。

信贷环境的复杂给银行信贷风险管理带来的较大挑战,客户信贷信息分散和孤立,造成了外部风险来源的多样化,银行需要寻找一种方式来打破这种信息不对称,购买外部信贷数据可以解决这个问题,但信贷数据的覆盖率也是一个较大的挑战。

2015年互联金融出现了井喷式的发展,行业贷款规模已经突破1万亿元,同时几个大的案件也将互联网金融推到了风口。相对于传统金融来讲,互联金融面对的客户风险较高,其风控面临的挑战更大,对数据风控对要求就会更高。

 三、互联网金融行业的风控挑战

中国的互联网金融企业愿意从美国挖一些风控人才来提高自身风控水平。但是美国的征信环境比中国简单,很多信息可以拿得到,美国已经是一个成熟的信用社会,复杂的欺诈场景和复杂的信用风险场景不多。很多风控模型到了中国之后并不适合,因此很多中国领先的互联网金融公司并没有采用美国的风控模型,大多是自己开发风控模型。中国目前互联网金融的风控环境和东欧的信用环境相似,东欧的一些征信公司在中国很有市场就是这个原因。中国互联网金融公司在信贷风险管理方面面临的挑战如下。

  1.客户风险较高

传统金融主要服务70%左右的客户,他们共同的特征就是还款能力强或者背景好。其他的客户包括中小企业和收入较低的白领、蓝领客户,银行不愿为他们提供服务。互联网金融公司主要为这些客户提供短期贷款、过桥贷款、消费贷款、发薪日贷款等。