人工智能商业化还要多久?

就目前应用领域来讲,人工智能广泛应用于机器翻译、智能控制、专家系统、机器人学、语言和图像理解、遗传编程机器人工厂、自动程序设计、航天应用、庞大的信息处理、储存与管理、执行化合生命体无法执行的或复杂或规模庞大的任务等方面。比如,人脸识别技术现在开始逐步应用,并且主要运用在安防领域。当然,我们也看到了人工智能在医疗、教育、娱乐等方面的做了一些尝试,但其开发的广度和深度还是有待拓展的。

而在大量的线下实体行业中,人工智能技术并没有得到充分的应用。因为在这些行业里面,数据往往都是很少量的,没有大量的用户行为数据。没有大量数据的支撑,就很难实现人工智能技术层面的应用。然而,没有应用场景支持的人工智能终究还是空中楼阁。

人工智能落地

三角兽科技创始人兼COO马宇驰表示,人工智能技术只有真正落地,有商业场景应用才具有生命力。

当然,人工智能的商业化不是一蹴而就的,它的实现是需要一个过程的,需要企业把人工智能真正地应用到商业环境里面去。人工智能可以通过技术支撑不断发展,拓展更多的应用场景,应用到更多的产业领域,而多样化的应用场景、广大的市场需求又反过来驱动支撑技术,从而带动整个人工智能行业的可持续发展。

二、人工智能怎样才能真正落地?

百分点集团董事长苏萌认为,目前人工智能领域的火爆,与3年前大数据火爆场景似乎同出一辙。他表示,尽管现在在人工智能领域的创业团队越来越多,但真正能找到并实现商业模式的团队并不多。目前应该深刻思考的一个问题是:人工智能如何能真正的落地。在苏萌看来,能真正实现人工智能落地的领域只有行业人工智能和商业人工智能。

百分点集团技术副总裁兼首席架构师刘译璟认为,人工智能本身是一个非常综合的领域,它与哲学、数学、物理学、信息学、心理学和生命科学等学科都存在着密切关系。如果人工智能要实现自身发展,支撑其发展的底层理论同样也要得到更新。除了在理论层面进行更新外,刘译璟强调在技术层面要建立集中式建模+ 微建模的建模模型,实现云计算与边缘计算的紧密结合。

在刘译璟看来,目前在计算能力方面,量子计算将给人工智能带来新的飞跃。一方面,量子算法可以极大的提高机器学习的效率,另一方面,量子物理理论阐述:人的意识与量子计算之间有很大的关联的。正是基于量子理论与意识之间微妙的关系,量子计算有可能会为人工智能带来“意识”。现阶段,像IBM、Google、微软这样的巨头公司早已经开始布局量子计算领域。

针对大量的线下实体行业往往不具备海量数据,刘译璟给出自己的看法,通过建立实用的知识图谱解决机器学习面临的冷启动问题。解决冷启动这一问题是利用人们在该领域中已有的经验和知识,将这些知识“告知”计算机,并让它利用这些知识解决问题。刘译璟认为,建设一个实用的知识图谱,首先需要清晰准确地梳理已有的知识,然后用实体、属性、关系等方式对知识进行描述。一旦将知识图谱建立起来,将不仅为单个企业,还将为整个行业、乃至整个世界带来极大的价值。目前,像 Google、微软这样的巨头已经在纷纷建设自己的知识图谱。

可以预料到,人工智能的进一步发展一定会依赖于各行各业知识图谱的建设,否则人工智能终将停留在实验室而无法深入到真实业务中。

然而,IBM大中华区副总裁郭继军曾经表示,并不是每个领域都要实现人工智能商业化,首先要找到适合运用人工智能的领域。人工智能的商业应用势必会在传统的线下行业得到运用,甚至是更加聚焦的垂直行业里面。但是,在这些行业里面,数据往往都是很少量的,没有大量的LG数据以及用户行为数据。通过人工智能,在行业领域内,形成一套新的、完整的知识体系,从而帮助这些企业进行决策。

在郭继军看来,找到合适的领域之后,最为重要一点便是解决如何提高数据挖掘能力的难题。大数据是企业能否实现人工智能的关键性因素。在深度学习之前,可能因为算力的原因,没有办法理解和洞察企业的非结构化数据,但是基于深度学习的人工智能现在具备这样的能力。所以对于现阶段的人工智能来讲,不是惧怕数据太多,而是怕没有数据可进行分析。