特朗普入主白宫,美国大选落下帷幕。回首这场混战,大数据技术在其中其实发挥了不小的作用,甚至占据了至关重要的地位。
社交媒体上的大数据分析
从美国大选之初,各候选人各方面的数据统计就已经被统计在各家网站上。比如从这张数据来看,上图表示的是各个候选人的推文提及率。而在同样的时间序列中,特朗普在推文中的提及率占有明显的领先优势,不过其他候选人在同一个坐标轴中几乎不可见。
图中下方的图标则是关于每位共和党候选人的推文的幸福感指数进行的比较,特朗普相对于克鲁兹和卢比奥有微弱的优势,对于卡森有明显的优势。并且,特朗普的平均幸福指数比希拉里略高(5.79比5.70),但仍比桑德斯低(5.79比5.85)。虽说这些数据并不能够直接决定最后的大选结果,但也间接的为特朗普获胜起到了润滑和推动作用。
除了这些幸福指数和提及率,大数据统计还对各个候选人的各个“标签”进行了统计,而正是这些标签决定了幸福指数等相关数据的分值高低。在下图特朗普和希拉里的“标签”对比中,词语的颜色根据感情状态表示——越蓝越快乐,越紫越悲伤,而且词语的大小由加权平均tf-idf值决定。
从图中不难看出,希拉里的词图中,正面词汇与负面词汇相交织,其中比较重要的正面词汇有“经验”,“才能”,“女性”,“世界”;负面词汇有“犯罪”,“调查”和“谎言”,这也许是与电子邮件服务器丑闻相关。而特朗普的词图中,最大的词汇包括支持者形容的“前行”,以及现在的共和党初选中的“胜利”;负面词汇,或许来自于他的反对者,包括“羞辱”,“攻击”,“种族主义”,“骗子”和“危险”。
除此之外,还有可供我们参考的是词汇转移图,如图所示:
希拉里的词汇转移图与参照分布比较相似(5.76比5.77)。负面词汇包括电子邮件调查及“监狱”,“犯罪”,“囚犯”,“丑闻”等。此外,“票据”是以负面形式呈现的词汇(被理解为支付票据),但是在希拉里这里则是指比尔·希拉里。正面词汇主要有“她”,“女性”,“感谢”,“健康”,而负面词汇“憎恨”,“悲伤”,“失败者”,“诈骗”,“种族主义”较少被提及。
而特朗普有最高的幸福水平(5.79),其正面词汇有“伟大”,“爱”,“美国”,“更好”等,显然,这与他的宣传口号相关——使美国再次伟大。但是他的负面词汇包括了更多。比如“憎恨”,“种族主义”,“死亡”,“失败者”,“悲伤”,“禁止”,以及以亵渎的方式,反映了他的反对者的观点。
通过分析大众趋势,民众可以通过数据了解到谁更符合国民的标准。而社交媒体运用大数据的统计和判断使得民众判断方向发生了一定的偏差,引导了整个舆论的导向,甚至改变了很多人的原始初衷,心中的那杆秤在不知不觉中发生了一定的偏差。
个人数据团队的关键性作用
当然,这个只是社交媒体和一些数据公司较为公正的数据统计,而对于特朗普和希拉里本人而言,个人背后的数据团队比较看来,简直就是一场大数据的盛宴。
传言希拉里有一支堪比硅谷公司的大数据团队——50名专业的程序员和开发者,大部分都是曾经供职于Facebook、Google、Twitter等大型的科技公司的高层人士。在他们的帮助下,如果想要想利用更多技术手段来帮助希拉里赢取更多选票和资金,简直是轻而易举的事情。比如,民主党对于竞选页面进行细微的调整,就可以让捐赠人储存信用卡信息。这种手段常用于电商公司将窗口用户变为付费用户的手段上,但现在在政治上同样适用,很多民众在不知不觉中便已经成为了希拉里“忠实”的支持者。