深度学习:远非人工智能的全部和未来

深度学习靠自己永远无法明白为什么杀害犹太人、同性恋以及残疾人是错误的,如果在训练数据集中纳粹主义是最流行的观点。难怪深度学习无法解释其自身决策,除了「我(深度学习)读到最多的是「纳粹主义是正确的」,因此它应该是正确的」。深度学习将会学习并模仿最具缺陷的逻辑,包括恐怖主义。甚至孩童可以自己明白电影中那个家伙是坏人,但是深度学习做不到,除非人类首先明确教导它。深度学习中有些东西很酷,比如带有反向传播的梯度下降、自定义深度学习硬件;但这多是统计学和几何学的,很可能不会出现在 2037 年的人工智能时代。

对很多任务来说,深度学习 AI 正在或者将会变的违法。收集 28 个欧洲国家公民数据的人或公司应在 2018 年 5 月 25 日起遵循《一般数据保护条例》(GDPR),届时欧洲的一些 APP 将被禁止使用深度学习,这导致初创公司拼命寻找深度学习的替代方案,否则将面临罚款的危险。罚款金额为全球营收的 4%,包括美国部分。关于自动化决策的 GDPR 要求深度学习具有解释其决策的能力,防止基于种族、观点等的歧视的发生。类似于 GDPR 的法律已在全球广泛制定,这只是时间问题。《美国公平信用报告法》要求披露所有对消费者信用评分产生不利影响的因素,数量上限是 4 个。深度学习的因素可谓海量,而不仅仅是 4 个,如何将其简化为 4 个呢?人工智能,正如比特币 ICO,开始忽视法规,但是法律与惩罚一直会在。

采取更多相关决策而不是区分一张图像是否是猫,或者在自拍的哪部分添加兔耳的深度学习系统将会被非深度学习系统取代。人工智能必须是负责任的,可以使用简单、合法有效的语言向法官和用户解释其输出结果,这与深度学习大不相同。深度学习的复杂性,对法官和用户来说就像是魔术,是一种法律风险,而不是一个很酷的未来。深度学习将会建议或警示人类,比如从医疗图像中检测疾病,并获得医生的验证,但这是部分的自动化,缺乏细节。我们将向因为人工智能而被拒绝并寻求解释的人们(工作、贷款被拒绝等)诉说什么呢?

法律包含「解释权」,比如,为什么工作或贷款被拒绝。深度学习给出了非自然(合法)语言解释的结果。深度学习的代码容易获得,却不为法官或用户所接受,因为即使最好的数学家或其他算法也无法搞明白它,将模型简化成可以理解的语言。即使由人类做出最后的决策,人工智能也应给出详细的理由。没有人知道如何修改深度学习以给出简单的人类可理解的解释,因此深度学习不可能做到顺从。这一问题同样影响到了若干个其他人工智能和机器学习算法,但不像深度学习那么严重。比如,如果决策树被提升或集成,它也会不可解释。但是未来,新的或者重新发现的已解决了黑箱问题的人工智能,将会在常规决策方面取代深度学习和人类。

在 GDPR 的情况中,只有人类可以拒绝一个应用:人工智能可自动化积极的结果;如果它拒绝了一项贷款、工作等,就应该将这项任务交给人类来处理这些消极的结果。但是在拒绝的情况中,人类将不会从基于深度学习的人工智能中获得帮助或解释,他们不知道深度学习的逻辑是否正确。他们不得不自己从头检查数据,以决定是否最终拒绝。风险在于为了节约时间和成本,人类会做出假的解释,并盲目接受人工智能的认可。安全起见,对于接受和拒绝,你都要有充足的理由,无论 GDPR 中说了什么。非深度学习的 AI 系统把所有决策的解释提供给用户、法官和支持人员,将最终被人类采用,用于做出完全和部分的自动化决策。

在法律和深度学习之前,解释性已经是一个大问题。在反垄断案例中,谷歌等公司被质问为什么是这个产品而不是其他产品出现在搜索结果中,这也是深度学习出现之前的事:很多其他的算法同样以疯狂的方式混合算法以得到结果,因此没有人类可以轻易地推论出决策原因。法官被告知工程师并不了解详情,线性代数的页面被当作证据。这无法善终:在特定的法律存在之前,多个案例承担着数十亿美元的罚款,甚至收到变更系统的警告。用户的集体诉讼根据商店、银行的自动决策单元自动拒绝工作、贷款、退款等,正越来越普遍。无法解释意味着没有防卫、被罚款以及一场品牌公关灾难。

对大部分人来说,「人工智能」是科幻电影《人工智能》(AI)中能够给出聪明解读的 AI,电影中人类可以快速决定自己是否同意,这样易于进行法律验证(legal validation)。大多数听说过「AI-first」或「使用 AI」公司的人,包括法官和撰写《一般数据保护条例》(GDPR)等法律的人,期待 AI 像电影中一样,即使被法院传召,也能够捍卫自己的决定,这令用户和法官都印象深刻。但是,与期待不同,我们得到的是无法解释的「深度学习人工智能」,这些人工智能即使在能够解决的问题上也不经常得到使用,因为其缺乏可解释性。深度学习不会节省成本,也不会取代那些需要敏锐的自动决策的工作。即使在人类必须作出最终决策的情况下,工具 AI 解释自己的建议也比 AI 不给出缘由就做出回应要更加可取。可解释的 AI 一旦被(重新)发现,将会更加安全、合法、廉价、快速,取代深度学习和人类。深度学习在 20 世纪 60 到 80 年代发明,2010 年以来重新被发现;或许未来可解释的 AI 的基础也已经被某些研究者描述出来,但是由于不是深度学习,所以可能在几十年内都没人关心和开发,直到它们被重新发现和炒热。