干货|金融大数据行业应用及发展全洞察

2)大数据能够降低金融机构的管理和运行成本

通过大数据对信息的挖掘和分析,金融机构能够准确地定位内部的管理缺陷,制订有针对性的改进措施,实行符合自身特点的管理模式,最终实现降低管理运营成本。大数据还提供了全新的沟通渠道和营销手段,可以更好的了解客户的消费习惯和行为特征,及时、准确地把握市场营销行情。

3)大数据有助于降低信息不对称程度,增强风险控制能力

金融机构可以摒弃原来过度依靠客户提供财务报表获取企业信息的业务方式,转而对其资产价格、账务流水、相关业务活动等流动性数据进行动态和全程的监控分析,从而有效提升客户信息透明度。目前,花旗、富国、UBS等先进银行已经能够基于大数据,整合客户的资产负债、交易支付、流动性状况、纳税和信用记录等,对客户行为进行360度评价,计算动态违约概率和损失率,提高贷款决策的可靠性。

2.大数据在银行业中的应用

从数据贡献度上看,银行是金融数据的重要贡献机构和使用机构。截至2015年第四季度末,全国共开立人民币银行结算账户73.7亿户,环比增长3.15%;个人银行结算账户73.25亿户,占银行结算账户的99.4%,环比增长3.15%;单位银行账户4439.03万户,环比增长2.43%,其中基本存款账户增加89.55万户,一般存款账户增加10.91万户,专用存款账户增加5.10万户,临时存款账户减少0.07万户。全国共发生银行卡交易3343.2亿笔,金额178.14万亿。其中,涉及互联网金融的网上支付发生106.37亿笔,同比增长25.21%;移动支付56.33亿笔,同比增长244.74%(数据来源:九次方大数据)。

中国银行业大数据应用主要集中在客户营销、产品创新、风险控制和运营优化四个领域。比如光大银行研发的“阳光理财”资产配置平台(APP),分析客户需求并设计与之匹配的资产配置方案以支持营销;民生银行通过大数据分析定义营销举措并防止客户流失;招商银行利用大数据发展小微贷款。总的来看,银行大数据的应用可以分为如下三个方面:

大数据

(银行业大数据应用)

1)帮助银行控制信贷风险

在传统方法中,银行对企业客户的违约风险评估多是基于过往的营业数据和信用信息,这种方式的最大弊端就是缺少前瞻性,因为影响企业违约的重要因素并不仅仅只是企业自身的经营状况,还包括行业的整体发展状况,而大数据手段的介入使信贷风险评估更趋近于事实。西班牙一家大型银行正是利用大数据来为企业客户提供全面深入的信用风险分析。该行首先识别出影响行业发展的主要因素,然后对这些因素进行模拟,以测试各种事件对其客户业务发展的潜在影响,并综合评判每个企业客户的违约风险。这样的做法不仅成本低,而且对风险评估的速度快,同时显著提升了评估的准确性。

2)大数据能够提升银行的中间收入

如今,坐拥海量数据的银行不再局限于使用数据服务其核心业务,把数据直接变成新产品并用来创造直接收入是新的中间收入拓展渠道。澳大利亚一家大型银行通过支付数据的分析了解零售客户“消费路径”,即客户进行日常消费时的典型顺序,包括客户的购物地点、购买内容和购物顺序,并对其中的关联进行分析。该银行将这些分析结果销售给公司客户,帮助客户更准确地判断合适的产品广告投放地点以及适合在该地点进行推广的产品。银行通过这种方式获得了传统业务之外的收入。更重要的是,银行通过这样的创新为客户提供了增值服务,从而大大增强了客户粘性。

3)使零售银行业务差异化产品设计更加丰富

在零售银行业务中,大数据为判断客户行为并匹配营销手段提供了广阔的创新空间。例如,海外银行围绕客户的“人生大事”进行交叉销售。这些银行对客户的交易数据进行分析,由此推算出客户经历“人生大事”的大致节点。人生中的这些重要时刻往往能够激发客户对高价值金融产品的购买意愿。通过对客户的银行卡交易数据进行分析,银行很容易识别出即将添丁的家庭,在这样的家庭中,准妈妈会开始购买某些药品,而婴儿相关产品的消费会不断出现。该行面向这一人群推出定制化的营销活动,获得了客户的积极响应,这种具有差异化的产品设计可以大幅提高交叉销售的成功率。