杨栋|MapReduce Hold不住?

背景

非实时计算几乎都基于MapReduce计算框架,但MapReduce并不是万能的。对于搜索应用环境中的某些现实问题,MapReduce并不能很好地解决问题。

商用搜索引擎,像Google、Bing和Yahoo!等,通常在用户查询响应中提供结构化的Web结果,同时也插入基于流量的点击付费模式的文本广告。为了在页面上最佳位置展现最相关的广告,通过一些算法来动态估算给定上下文中一个广告被点击的可能性。上下文可能包括用户偏好、地理位置、历史查询、历史点击等信息。一个主搜索引擎可能每秒钟处理成千上万次查询,每个页面都可能会包含多个广告。为了及时处理用户反馈,需要一个低延迟、可扩展、高可靠的处理引擎。然而,对于这些实时性要求很高的应用,尽管MapReduce作了实时性改进,但仍很难稳定地满足应用需求。因为Hadoop为批处理作了高度优化,MapReduce系统典型地通过调度批量任务来操作静态数据;而流式计算的典型范式之一是不确定数据速率的事件流流入系统,系统处理能力必须与事件流量匹配,或者通过近似算法等方法优雅降级,通常称为负载分流(load-shedding)。当然,除了负载分流,流式计算的容错处理等机制也和批处理计算不尽相同。

最近Facebook在Sigmod 11上发表了利用HBase/Hadoop进行实时数据处理的论文,通过一些实时性改造,让批处理计算平台也具备实时计算的能力。这类基于MapReduce进行流式处理的方案有三个主要缺点。

将输入数据分隔成固定大小的片段,再由MapReduce平台处理,缺点在于处理延迟与数据片段的长度、初始化处理任务的开销成正比。小的分段会降低延迟,增加附加开销,并且分段之间的依赖管理更加复杂(例如一个分段可能会需要前一个分段的信息);反之,大的分段会增加延迟。最优的分段大小取决于具体应用。

为了支持流式处理,MapReduce需要被改造成Pipeline的模式,而不是Reduce直接输出;考虑到效率,中间结果最好只保存在内存中等。这些改动使得原有的MapReduce框架的复杂度大大增加,不利于系统的维护和扩展。

用户被迫使用MapReduce的接口来定义流式作业,这使得用户程序的可伸缩性降低。

综上所述,流式处理的模式决定了要和批处理使用非常不同的架构,试图搭建一个既适合流式计算又适合批处理计算的通用平台,结果可能会是一个高度复杂的系统,并且最终系统可能对两种计算都不理想。

目前流式计算是业界研究的一个热点,最近Twitter、LinkedIn等公司相继开源了流式计算系统Storm、Kafka等,加上Yahoo!之前开源的S4,流式计算研究在互联网领域持续升温。不过流式计算并非最近几年才开始研究,传统行业像金融领域等很早就已经在使用流式计算系统,比较知名的有StreamBase、Borealis等。

本文简单介绍几种业界使用的流式计算系统,希望流式系统的设计者或开发者们能从中获得启示。

 

图1 数据分析系统整体组成示意图

 

图1 数据分析系统整体组成示意图

图1从整个分析系统的架构角度,给出了实时计算子系统所处的位置。实时计算系统和批处理计算系统同属于计算这个大的范畴,批处理计算可以是MapReduce、MPI、SCOPE等,实时计算可以是S4、Storm等,批处理和实时都可以或不依赖统一的资源调度系统。另外,计算系统的输入、输出,包括中间过程的输入、输出,都与存储系统交互,可以是块存储系统HDFS,也可以是K-V存储系统Hypertable等。计算层的上层是数据仓库,或者直接和用户交互,交互方式可以是SQL-like或者MR-like等。

系统

S4

S4是一个通用的、分布式的、可扩展的、分区容错的、可插拔的流式系统。基于S4框架,开发者可以轻松开发面向持续流数据处理的应用。

S4的设计特点有以下几个方面。

Actor Model

为了能在普通机型构成的集群上进行分布式处理,并且集群内部不使用共享内存,S4架构采用了Actor模式,这种模式提供了封装和地址透明语义,因此在允许应用大规模并发的同时,也提供了简单的编程接口。S4系统通过处理单元(Processing Elements,PEs)进行计算,消息在处理单元间以数据事件的形式传送,PE消费事件,发出一个或多个可能被其他PE处理的事件,或者直接发布结果。每个PE的状态对于其他PE不可见,PE之间唯一的交互模式就是发出事件和消费事件。框架提供了路由事件到合适的PE和创建新PE实例的功能。S4的设计模式符合封装和地址透明的特性。

Decentralized and Symmetric Architecture

除了遵循Actor模式,S4也参照了MapReduce模式。为了简化部署和运维,从而达到更好地稳定性和扩展性,S4采用了对等架构,集群中的所有处理节点都是等同的,没有中心控制。这种架构将使得集群的扩展性很好,处理节点的总数理论上无上限;同时,S4将没有单点容错的问题。

Pluggable Architecture

S4系统使用Java开发,采用了极富层次的模块化编程,每个通用功能点都尽量抽象出来作为通用模块,而且尽可能让各模块实现可定制化。

Partial Fault-Tolerance

基于Zookeeper服务的集群管理层将会自动路由事件从失效节点到其他节点。除非显式保存到持久性存储,否则节点故障时,节点上处理事件的状态会丢失。

Object Oriented

节点间通信采用“Plain Old Java Objects”(POJOs)模式,应用开发者不需要写Schemas 或用哈希表来在节点间发送Tuples。

S4的功能组件分3大类,Clients、Adapters和PNode Cluster,图2显示了S4系统框架。

 

图2 Yahoo! S4流式系统框架结构图

 

图2 Yahoo! S4流式系统框架结构图

S4提供Client Adapter,允许第三方客户端向S4集群发送事件和接收事件。Adapter实现了基于JSON的API,支持多语言实现的客户端驱动。

Client通过Driver组件与Adapter进行交互,Adapter也是一个Cluster,其中有多个Adapter结点,Client可以通过多个Driver与多个Adapter进行通信,这样可以保证单个Client在分发大数据量时Adapter不会成为瓶颈,也可以确保系统支持多个Client应用并发执行的快速、高效和可靠性。