沃尔玛是最早通过利用大数据而受益的企业之一,一度拥有世界上最大的数据仓库系统。通过对消费者的购物行为等非结构化数据进行分析,沃尔玛成为最了解顾客购物习惯的零售商,并创造了“啤酒与尿布”的经典商业案例。早在2007年,沃尔玛就建立了一个超大的数据中心,其存储能力高达4Pb以上。《经济学人》在2010年的一篇报道中指出,沃尔玛的数据量已经是美国国会图书馆的167倍。
中国移动集团山西有限公司通过大数据分析,对企业运营的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。
比如,一个客户使用最新款的诺基亚手机,每月准时缴费、平均一年致电客服3次,使用WEP和彩信业务。如果按照传统的数据分析,可能这是一位客户满意度非常高、流失概率非常低的客户。事实上,当搜集了包括微博、社交网络等新型来源的客户数据之后,这位客户的真实情况可能是这样的:客户在国外购买的这款手机,手机中的部分功能在国内无法使用,在某个固定地点手机经常断线,彩信无法使用——他的使用体验极差,正在面临流失风险。
通过大数据进行用户行为的分析,互联网企业的起步普遍更早一些。eBay分析平台高级总监说,5年前他们就建立了大数据分析平台。在这个平台上,可以将结构化数据和非结构化数据结合在一起,通过分析促进eBay的业务创新和利润增长。
现在,eBay的分析平台每天处理的数据量高达100PB,超过了纳斯达克交易所每天的数据处理量。为了准确分析用户的购物行为,eBay定义了超过500种类型的数据,对顾客的行为进行跟踪分析。
在早期,eBay网页上的每一个功能的更改,通常由对该功能非常了解的产品经理决定,判断的依据主要是产品经理的个人经验。而通过对用户行为数据的分析,网页上任何功能的修改都交由用户去决定。每当有一个不错的创意或者点子,他们都会在网站上选定一定范围的用户进行测试。通过对这些用户的行为分析,来看这个创意是否带来了预期的效果。
更显著的变化反应在广告费上。eBay对互联网广告的投入一直很大,通过购买一些网页搜索的关键字,将潜在客户引入eBay网站。为了对这些关键字广告的投入产出进行衡量,eBay建立了一个完全封闭式的优化系统。通过这个系统,可以精确计算出每一个关键字为eBay带来的投资回报。通过对广告投放的优化,自 2007 年以来,eBay 产品销售的广告费降低了99%,顶级卖家占总销售额的百分比却上升至32%。