数据服务化具体的实现可能还是先从主流互联网应用数据库(比如 MySQL, PostgreSQL)开始,然后逐渐覆盖各种实现,比如 Redis 实现、MongoDB 实现等。在解决完功能问题之后,要解决性能问题、安全问题,整个就会变成一个很大的热点;最开始还是先面向开发者慢慢扩展到企业层面。
未来之路
在最开始,业内容易把云和大数据搞混,认为 Hadoop 就是云;后来慢慢理解其实是两种泾渭分明不同的技术。而现在,大数据的进一步发展又离不开云计算能力:大数据处理最后给哪个应用使用,如何获得大数据信息价值以及提供给谁,需要经过应用平台把大数据的能力体现出去。从这个应用的角度来看,我认为大数据应用需要落在 PaaS 上。另外,云有很好的弹性能力,所以云可以更好地支持大数据的弹性计算。
不过这新结合的难度要大于之前的热点技术容器和微服务,如果说这后两者解决的是点问题,那大数据和PaaS的结合则是面的问题,PaaS本身就是个很大的面。点点结合比较容易,但是面和面结合难度就会比较大,我估计需要 3-5 年或者更长时间才能逐步发展成熟。
-----------------------------------
嘉宾简介
周晖,Pivotal大中华区云计算首席架构师,有着丰富的 PaaS 云实际建设经验,负责过国内某知名银行已经生产上线一年的 PaaS 云的架构设计和部分功能的实现,参与过某超算 PaaS、某超市电商 PaaS、某电力 PaaS 等项目的建设。