【技术辟谣】Facebook机器人发明语言系误读!

下面是示意图,选择得分为 9 的最下面那条路线,显然结果最好(能够拿到 3 顶帽子)。

实际上,类似的思路也被用于游戏环境中的规划问题,但 Facebook 研究人员表示,这种方法此前还从未被用于语言研究,原因是可以选择的行动数量过于巨大。

实际上,类似的思路也被用于游戏环境中的规划问题,但 Facebook 研究人员表示,这种方法此前还从未被用于语言研究,原因是可以选择的行动数量过于巨大。

为了提高效率,FAIR 研究人员首先生成了一小部分备选的表述(utterance),然后重复模拟未来的整个对话,从而估算这种表述成功的程度。FAIR 开发的这种模型,预测准确率足够高,从而在好几个方面极大提升了谈判策略:

更努力地谈判(Negotiating harder):新的智能体能与人类进行更长时间的对话,不会那么快就成交。模型会一直谈判一直谈判,直到达成协议。

有策略地谈判(Intelligent maneuvers):在一些案例中,智能体在最开始会对自己不感兴趣的东西装作很感兴趣,之后把这些东西放弃,显得自己做出了妥协——人在谈判时也常常使用这种策略。FAIR 研究人员表示,这不是编程实现的,而是 bot 自己观察后认为这是一种实现目的的好方法。

生成新的句子(Producing novel sentences):神经网络往往倾向于重复训练数据中见过的句子,但在这项研究中,模型在必要时生成了新的句子。

从 Facebook 官博上给出的例子(见下),这个谈判 AI 开发还是成功的:

AI 用人类不懂的方式沟通非常正常,难的是让 AI“说人话”

AI 用人类不懂的方式沟通非常正常,难的是让 AI“说人话”

现在,Facebook 确实关闭了这个对话项目,但并不是因为他们对创造出可能不受控制的智能体感到恐慌。

在 FastCo 的报道中,FAIR 另一名研究员 Mike Lewis 说,他们决定关闭对话,因为“我们感兴趣的是做能够与人类对话的 bot”,而不是 bot 互相间能够很有效率地进行对话,“我们要求 bot 相互之间的对话要能够被人理解”。

但在这个媒体浮夸的时代,新闻报道所做的可能与这些机器人并没什么不同,这个故事从关注机器学习技术的短期实现潜力,演变成制造恐慌的末日故事。

实际上,正如 Dhruv Batra 所说,AI 之间“交流”是非常普通的一个现象,只要你把两个机器学习设备放在一起,并让它们相互学习,都会出现这样的现象。值得一提的是,假如 bot 之间简略的“语言”可以解释,出来的对话也就能够理解,并且完全不像之前的那么可怕。

这类机器学习技术可能让智能设备或系统更高效地相互交流。如果说这些成果引出一些问题,就是一旦这样的系统出错,debug 会非常不容易!但这完全不是说人工智能脱离了人类的控制。

上海交通大学教授、斯坦福 AI Lab 博士后卢策吾在接受新智元采访时表示,这件事情告诉我们,没有很 solid 和 novel 的工作,PR 需谨慎,可能对自己和机构都是副作用。研究计算机是否能(非监督地)独立产生自己的语言,这件事情本身是非常有意义的科学探索,因为这是检验计算机是否理解人类高级语义和抽象概念的好方法。

他也建议大家有兴趣的话,可以看一下Noam Chomsky 的经典讨论,这样更能把语言产生这件事的高度提高一下。

“这就像一个与世隔绝的部落,AI 独立产生了自己语言,虽然符号表达和我们不一样,但是我们一翻译,发现它们有和我们一样的高级语义,比如“朋友”,“爱情”等等,我会说他们真的理解这些概念,具有人类的高级智能。”卢策吾告诉新智元。

目前,计算机能识别“猫”,“狗”,“汽车”,但计算机真的理解这个概念吗?卢策吾认为不一定,更多是像模式识别(pattern recognition)。“例如,有一辆外形奇怪的车,在训练集合里没出现过,计算机马上就挂了,因为计算机没有‘什么是车’这个概念,而是记下一般情况下车的长相。”卢策吾说:“这样就看出,目前计算机没有真正全面地理解人类概念,还是比较低级别的 AI。如果计算机真的理解人类概念,其对现实世界的改造威力将会大上好几个量级。”