注射模软件的三个发展阶段

  引言 

  塑料模CAD/CAE/CAM技术的重要性正逐渐被模具界所认识,其中塑料注射模应用软件的发展十分引人注目,在工业界形成了一花独放的局面。注射模软件的发展可划分为三个阶段,第1阶段为开发独立运行的注射过程模拟软件,第2阶段为二维模具设计软件与模拟软件的集成,第3阶段为三维模具设计与制造软件及模拟软件的集成。本文重点论述各个发展阶段的工作内容、特点、存在的问题及发展趋向。  

  澳大利亚Moldflow公司在1978年推出的基于有限差分方法的一维商品化流动分析软件MF1.0,以及美国AC_Tech公司在1986年推出的基于有限元方法的二维商品化流动分析软件C_Flow1.0是这一阶段注射模软件发展的两个里程碑。在随后的10年里,MF和C_Flow软件不断地得以改进和完善,现已形成包括流动模拟、保压分析、冷却分析、内应力分析、分子定向和翘曲变形预测等系列分析软件,在国内外模具界享有盛誉。华中理工大学模具技术国家重点实验室目前推出的注射过程模拟软件HS_CAE97具有自主版权。HS_CAE97系统在Windeow95/NT环境下运行,在OpeGL/GUI软件的支持下,采用了面向对象的程序设计方法和曲面造型方法。该系统在软件结构设计上,制订了一个能在多个软、硬件平台上运行的通用用户管理系统UIMS,能将应用软件和系统开发资源完全屏蔽,保证了良好的可移植性和可维护性。HS_CAE97的主要功能与特点为:(1)先进的三维曲面造型系统。(2)三角形网格的自动划分和优化。(3)统一的窗口界面风格。(4)注射流动、保压和冷却过程分析软件的集成。(5)计算结果与实验实测相吻合。图1HS_CAE97系统的组织结构这一阶段开发的软件由于数学模型和算法的局限性,无论是国外的MF和C_Flow,还是国内的HS_CAE97都存在着以下缺点和问题: 

  (1)尽管所有软件都采用了三维可视化技术,但这些软件所基于的数学模型在实质上都是二维模型。由于数学模型过于简化,导致分析结果不精确,在许多情况下所获得的分析结果只能定性,不能定量,翘曲分析软件便成为无源之水。  

  (2)由于算法的局限性,流动、保压及冷却软件均需采用中性面来分析。所谓中性面是假想的位于模具型腔和型芯中间的层面,用户直接由塑料制品来构造中性面已深感困难,若依据型腔和型芯图形来生成中性面则更是难上加难。长期以来,中性面的生成一直是运行注射过程分析软件的拦路虎。  

  (3)运行流动和冷却分析软件时,必须事先知道模具浇注系统和冷却系统的布置方案和注射工艺条件,在缺少这些初始数据的情况下,分析软件的使用价值和效率便大打折扣,单纯依靠尝试法即使是反复运行这些分析软件也不一定能获得合适的技术方案和工艺条件。 

  (4)这些独立开发的分析软件的曲面造型和编辑功能具有相当的局限性,其造型的方便程度和应用的覆盖面远不能和著名的商品化CAD/CAM系统(如Pro_E、CADDS5、UGⅡ)相比。 

  (5)由商品化CAD/CAM软件生成的塑料制品几何模型或型腔与型芯的几何模型一般都不能自动生成中性面,二次输入不可避免,为此常要耗费用户大量的精力和时间。  

  3二维模具设计软件与分析软件的集成 

  近10年来,计算机绘图和自动编程技术在模具界的普及程度越来越高,在CAD/CAM技术日新月异的90年代,人们已不满足仅将计算机作为绘图和编程的工具,而迫切希望在同一软件环境下,既要有绘图功能,又要有设计、计算、分析和加工的功能,模具CAD/CAM/CAE的集成系统便应运而生。华中理工大学模具技术国家重点实验室在成功开发注射过程分析模拟软件的基础上,采用在塑料模具界应用最为广泛的商品化二维软件AutoCAD,实现了二维模具设计软件与模拟软件的集成。HSCAD 2.0的全部程序均是在AutoCAD提供的ADS开发平台上采用C语言编写的,为用户提供了统一的人机界面,除了AutoCAD本身的功能外, HSCAD 2.0包括了模具结构设计子系统、结构及工艺参数计算校核子系统、塑料注射流动、保压与冷却模拟子系统、数控线切割编程子系统、建库工具和设计进程管理等模块,所以程序均能在AutoCAD的环境下集成运行。