先进传感技术简化机器人设计制造过程

过去,机器人制造是一个非常困难、容易出错且耗时的过程,因为采用由分立元件构成的装置实现对环境的感应,而这些装置中很多部件都不能有效地协同工作,处 理器缺乏足够的能力从多个传感器收集信息并处理这些信息。下面我们以超声波距离传感器为例进行说明机器人设计制造的过程。

构建超声波 传感器首先需要一个超声波换能器,然后搭建一些接口电路用来发送脉冲,以及记录返回信号的时间。连接机器人处理器的接口由指示测试起始时间的输出信号以及 回声探测定时器计数值的输入信号组成。处理器获取所用的总时间并将这个时间转换成距离。如果需要处理多路回声,硬件则会变得更加复杂。这种设计不仅受软硬 件局限性的困扰,而且所有的东西都在内部生产,因此增加了成本和上市时间。随着时间推移,处理器的功能变得越来越强大,以往由单独硬件处理的任务都可由处 理器完成。

通过处理器执行回声返回处理任务,可以开发出复杂的多路回声处理算法。这样一来降低了硬件部分的复杂度,从而降低 了成本,不过软件编程过程依然耗时,因为大多数硬件及其软件驱动程序是定制的。由于软件变得更加复杂,因而使当时的处理器负担很重。那时,为了解决这个问 题,通常使用多个处理器,然而却导致潜在的竞争条件、死锁以及一些很难重现的各种奇怪问题。

今天,使用现成的、配有各种硬件外设的微控制器或微处理器板已相当普遍。这些外设通常提供硬件接口辅助功能,例如定时器和通信总线,常见的通信总线有RS-232、USB、I2C或CAN总线。使用接口驱动器减轻了软件实现的负担。目前很多传感器利用常见总线进行通信,从而简化了接口设计。如图3所示。

许 多传感器还增加了处理能力,从而可以收集经过预处理的更高级别的数据。传感器的工作不是传送收发声纳回声信号所需的时间(毫秒),而是报告距离某个物体的 远近(毫米),收集到的数据可以得到更有效的处理。这样主处理器就不必进行低级别的运算,而去从事更高级别的任务,例如定位和绘制地图。

图1:超声波距离传感器系统框图。
图1:超声波距离传感器系统框图。

图2:带辅助处理器的声纳系统。
图2:带辅助处理器的声纳系统。

图3:带USB接口的传感器系统。
图3:带USB接口的传感器系统。

借助于大量现成的传感器接口(例如通信链路、软件驱动器以及处理检测数据的算法),研发工程师就可以更快速地开发和提出解决方案,从而赢得面市时间上的优势。开发机器人功能的负担从研发工程师转移到了传感器提供者身上。

传 感器系统将继续受到低成本处理能力以及数据处理算法的影响。受这种增长影响最大的是“传感器融合”,即传感器数据流由多个传感器收集并处理,以产生智能且 精确信息流。传感器数据融合在一起,形成单一的环境。如图四所示,将红外距离传感器与声纳配合,可以探测到多种材料和情形,这是单个器件所不可能独立实现 的。

图4:超声波和红外传感器“融合”在一起。
图4:超声波和红外传感器“融合”在一起。

成熟的软件算法拓展出很多令人激动的领域,例如面部识别。几年之前,由于处理能力不足,还无法实时实现这种功能。而现在,已有产品可以实时处理众多面孔识别。很快,传感器系统将不再仅仅报告“目标在前方2米处”,而是报告“某某人在前方2米处”。

定位和地图描绘是另外一个技术领域,近年来业界对此技术的兴趣不断增加。已经有多种现成的SLAM(同步定位与地图描绘)算法实现可被免费使用或只需支付很低的费用。这种趋势在很多软件领域都在出现,并且会继续发展。

在 立体视觉领域也出现了令人激动的增长。单个相机所产生的数据量可能非常大,但是立体视觉使数据量更大,因为需要两部相机同时工作。这在通信链路、处理能力 和软件算法成熟之前,只是一个遥远的可能性。而今,现成的系统就可以实现距离探测。随着这些系统不断改进,它们的速度和精度使其成为其他形式的距离测量可 选方案。超声波、红外和立体视觉的“融合”系统将能够在任何环境中工作。