多传感器数据融合技术及其应用

4.1 数据融合存在的问题

(1)尚未建立统一的融合理论和有效广义融合模型及算法;
(2)对数据融合的具体方法的研究尚处于初步阶段;
(3)还没有很好解决融合系统中的容错性或鲁棒性问题;
(4)关联的二义性是数据融合中的主要障碍;
(5)数据融合系统的设计还存在许多实际问题。

4.2 数据融合发展趋势

数据融合的发展趋势如下:

(1)建立统一的融合理论、数据融合的体系结构和广义融合模型;
(2)解决数据配准、数据预处理、数据库构建、数据库管理、人机接口、通用软件包开发问题,利用成熟的辅助技术,建立面向具体应用需求的数据融合系统;
(3)将人工智能技术,如,神经网络、遗传算法、模糊理论、专家理论等引入到数据融合领域;利用集成的计算智能方法(如,模糊逻辑+神经网络,遗传算法+模糊+神经网络等)提高多传感融合的性能;
(4)解决不确定性因素的表达和推理演算,例如:引入灰数的概念; (5)利用有关的先验数据提高数据融合的性能,研究更加先进复杂的融合算法(未知和动态环境中,采用并行计算机结构多传感器集成与融合方法的研究等);
(6)在多平台/单平台、异类/同类多传感器的应用背景下,建立计算复杂程度低,同时,又能满足任务要求的数据处理模型和算法;
(7)构建数据融合测试评估平台和多传感器管理体系;
(8)将已有的融合方法工程化与商品化,开发能够提供多种复杂融合算法的处理硬件,以便在数据获取的同时就实时地完成融合。

5 结束语

随着研究者的不断努力,不久的将来,数据融合的基础理论、兼有鲁棒性和准确性的融合算法将不断地得到完善,实现技术将不断地得到更新,实际应用将不断地被扩展。多传感器数据融合技术必将不断地走向成熟。

Tags: