0 引 言
移动机器人是一个集环境感知、动态决策、行为控制与执行等多种功能于一体的综合系统,其运动控制是移动机器人领域的一个重要研究方向,也是移动机器人轨迹 控制、定位和导航的基础。传统的运动控制常采用PID控制算法,其特点是算法简单,鲁棒性强,可靠性高,但需要精确的数学模型才对线性系统具有较好的控制 效果,然而它对非线性系统的控制效果并不非常理想。模糊控制不要求控制对象的精确数学模型,因而灵活、适应性强。可是,任何一种纯模糊控制器本质上是一种 非线性PD控制,不具备积分作用,所以很难在模糊控制系统中消除稳态误差。针对这个问题,采用模糊PID控制方法,将模糊控制器和传统的PID控制相结 合,使其既具有模糊控制灵活、适应性强的优点,又具有PID控制精度高的特点。
1 全方位移动机器人运动学分析
研究的是由第二炮兵工程学院自主研制的全自主移动机器人平台——东风一Ⅱ型足球机器人。东风一Ⅱ型机器人采用了四轮全向移动的运动方式,具有全向运动能力 的系统使机器人可以向任意方向做直线运动,而之前不需要做旋转运动,并且这种轮系可满足一边做直线运动一边旋转的要求,以达到终状态所需要的任意姿态角。 全向轮系的应用将使足球机器人具有运动快速灵活,控球稳定,进攻性强,以及易于控制等优点,使机器人在赛场上更具竞争力。
1.1 全向轮
该机器人采用在大轮周围均匀分布小轮子的全向轮,大轮由电机驱动;小轮可自由转动。这种全方位轮可有效避免普通轮子不能侧滑所带来的非完整性约束,使机器人具有平面运动的全部三个自由度,机动性增强。基于以上分析,选择使用这种全向轮。
1.2 运动学分析
在建立机器人的运动模型前,先做以下假设:
(1)小车是在一个理想的平面上运动,地面的不规则可以忽略。
(2)小车是一个刚体,形变可以忽略。
(3)轮子和地面之间满足纯滚动的条件,没有相对滑动。
全方位移动机器人由4个全向轮作为驱动轮,它们之间间隔90°均匀分布(如图1所示),其简化运动学模型如图6所示。其中,xw-yw为绝对坐标 系;xm-ym为固连在机器人车体上的相对坐标系,其坐标原点与机器人中心重合。θ为xw与xm的夹角;δ为轮子与ym的夹角;L为机器人中心到轮子中心 的距离vi为第i个轮子的沿驱动方向的速度。
可求出运动学方程如下:
因为轮子为对称分布,常数δ为45。,故得到全向移动机器人的运动模型:
P为转换矩阵。
这样,就可以将机器人整体期望速度解算到4个轮子分别的速度,把数据传送到控制器中,可以完成对机器人的控制。
2 基于模糊PID的运动控制器设计
目前,常规PID控制器已被广泛应用于自动化领域,但常规PID控制器不具备在线整定控制参数忌kp,k1,kD的功能,不能满足系统的不同偏差对e和偏差值变化率ec及对PID参数的自整定要求,因而不适用于非线性系统控制。
结合该运动控制系统的实际运行条件,设计采用模糊PID控制方法来实现快速移动机器人车轮转速大范围误差调节,将模糊控制和PID控制结合起来构成参数模 糊自整定PID算法用于伺服电机的控制,使控制器既具有模糊控制灵活而适应性强的优点,又具有PID控制精度高的特点,使运动控制系统兼顾了实时性高,鲁 棒性强及稳定性等设计要点,并可通过模糊控制规则库的扩充,为该运动控制系统方便添加其他功能。
2.1 参数模糊自整定PID的结构
模糊PID控制系统结构框图如图2所示,系统的输入为控制器给定轮速,反馈值为电机光电码盘反馈数字量,ΔkP,Δk1,ΔkD为修正参数。PID控制器的参数kP,k1,kD。由式(3)得到(kP',k1',kD'为PID参数初值):