That kind of open-ended vision doesn’t work here, where our funding environment rewards near-term products, not totems. As a result, the U.S., though it is filled with robotics projects, lags behind Japan and South Korea in the development of humanoids. In 2006, sponsored by the National Science Foundation and others, the nonprofit World Technology Evaluation Center (WTEC) published a report entitled “International Assessment of Research and Development in Robotics,” comparing America’s activities with the rest of the world’s. The report concluded that while this country leads the world in military and medical robotics, it is quickly losing that advantage and falls short when it comes to robot mobility and humanoid robotics. Although “robotics is a very active field, worldwide,” the authors wrote, “Japan, Korea and the European Community invest significantly larger funds in robotics research and development for the private sector than the U.S。”
“Money is flowing to universities and research centers,” says University of Southern California engineering professor George Bekey, who led the WTEC team on a research trip through Korea and Japan in 2004 and 2005. “Korean funding for robotics is about $80 million a year. In contrast, U.S. funding for civilian robotics from the National Science Foundation is about $10 million a year。”
Military spending on American robotics is robust, but our war-robot platforms are getting us no closer to a humanoid. Those platforms are purpose-built for bomb defusal and aerial surveillance, and so don’t provide broader opportunities. “Korea and Japan have national strategic initiatives in robotics,” the WTEC group wrote. “In the U.S., Darpa programs”—the chief source of military funding for high-level robots—“are highly applied and short-term oriented, while its support for basic research in robotics has been drastically reduced。”
Viewed through the eyes of a Darpa program officer, it’s easy to see why humanoids have been largely ignored. The logic of researchers like Hong is that to be truly useful, domestic robots must be human-shaped, because such technologies as stairs and refrigerator doors and bottle openers are designed for human use. But when funding agencies read that argument in a grant proposal, it only goes so far, because research hasn’t established a consistent model for automated forms of walking, or opening iceboxes, or cracking beers. Designing humanoids, in other words, puts the cart before the horse。
“It has to do with U.S. pragmatism,” says Carnegie Mellon University professor James Kuffner, who develops machine-learning software and heads the university’s Humanoid Interaction Team. Like many leading American roboticists who do research in Asia, Kuffner worked for several years in Japan as part of a robotics fellowship at the University of Tokyo and is in the midst of a year’s sabbatical at Google. “We think, ‘If we have a problem, let’s design the simplest, cheapest solution,’ ” he says。
Lee explains it in similar terms. “If you write a proposal here for a robot that plays music, you’ll have a very hard time finding funding. What’s the practical purpose?” he says. “Yet if a robot improvised a jazz performance, it might teach you all sorts of things about artificial intelligence and even human intelligence. There’s more openness to that kind of investigation in Asia and Europe. Here the focus is on a well-defined problem。”
As a result, what might otherwise someday form a full-fledged humanoid is in well-defined pieces all over the country. American researchers, focused on solving practical problems, are developing robotic prosthetics that are the functional equivalent of human limbs, robotic eyes that can detect cancer, and highly articulated robot arms capable of assembling tiny, intricate machines on a factory floor. Robotic components evolve separately and for highly specialized tasks。
Take grasping, for example. The interception and manipulation of objects by an automated appendage is perhaps the most commonly researched problem in robotics. (“It’s approachable,” Hong says。) Barrett Technology, in Cambridge, Massachusetts, has developed the WAM arm (short for Whole-Arm Manipulation) and the BarrettHand—lightweight, high-torque robotic limbs capable of complex motions and manipulations. Deka Research and Development Corp., led by inventor Dean Kamen, created the Luke Arm, which is also capable of extremely sophisticated movement, as an advanced human prosthesis. And Willow Garage, a company founded by open-source-software pioneer Scott Hassan, has created PR2, a two-armed robot atop a wheeled base. PR2 is particularly useful for investigating the manipulation of objects while it’s in motion, an even more advanced problem—a team at the University of California at Berkeley recently used PR2 to devise a sophisticated and much-celebrated towel-folding algorithm。