以人为本的机器学习:谷歌人工智能产品设计概述

  无论对 AI 产品有何需求,通过实地验证,「Content Specialists」就可以创建一系列手动标注示例。通过这些例子便可以掌握数据收集流程,用于训练模型的标签,以及用于设计大规模标签协议的框架。

  7. 扩充用户体验设计师队伍,机器学习是一个创意过程

  作为 UXer,试想一下最糟糕的所谓微管理「反馈」是什么。是不是就好像一个奇怪的家伙靠着你肩膀对你的每个动作指手画脚?好的,记住这个场景,并且万分确定你绝对不会碰到这样的工程师。

  有很多潜在的方法可以应对任何机器学习的挑战。对于 UXer 来说,过早地被条条框框束缚可能会无意间变得被动而缺乏创造力。相信工程师们的直觉并且鼓励他们大胆去试验,哪怕缺乏完整的评估体系会使其对用户测试犹豫不决。

  机器学习是一个比我们想象中更具创造力和表现力的过程。训练模型过程很漫长,可视化的工具还不是很好,所以工程师在调整算法时最终靠的是他们的想象力(有一种被称为「主动学习」的方法,手动「调整」每次迭代后的模型)。持续地帮助工程师们做出伟大的以用户为中心的选择任重道远。

  与工程,产品为伍,拼接对的体验。

  工程师们需要被启发--规则,个人经历,视频,模型,用户研究的剪辑--不论任何方式,只要能够呈现出什么才是超棒的用户体验--让他们能顺畅地展开用户研究,并出其不意地将其带入充满设计师头脑风暴,研讨会和设计大赛的精彩世界从而更深入地了解产品原理和体验目标。工程师越早地进入产品改进阶段,机器学习系统的鲁棒性就会越好,那么就会对产品形成更加积极有效的影响。

  总结

  以上就是谷歌内部对开发团队强调的七个要素,我们希望这些在你的机器学习产品创造过程中同样有用。随着机器学习开始助力越来越多的产品和用户体验研究,让我们继续坚持以人为本,为人们寻求独特的价值,让每一次体验都变得弥足珍贵。