· 基于特定人脸子空间的人脸识别方法
问题:
Eigenface是人脸识别领域最着名的算法之一,本质上是通过PCA来求取人脸图像分布的线性子空间,该空间从最佳重构的角度反映了所有人脸图像分布的共性特征,但对识别而言,这样的特征却未必有利于识别,识别任务需要的是最大可能区分不同人脸的特征。
摘要:
“特征脸”方法中所有人共有一个人脸子空间,而我们的方法则为每一个体人脸建立一个该个体对象所私有的人脸子空间,从而不但能够更好的描述不同个体人脸之间的差异性,而且最大可能地摈弃了对识别不利的类内差异性和噪声,因而比传统的“特征脸算法”具有更好的判别能力。另外,针对每个待识别个体只有单一训练样本的人脸识别问题,我们提出了一种基于单一样本生成多个训练样本的技术,从而使得需要多个训练样本的个体人脸子空间方法可以适用于单训练样本人脸识别问题。在Yale Face DatabaseB人脸库对比实验也表明我们提出的方法比传统的特征脸方法、模板匹配方法对表情、光照、和一定范围内的姿态变化具有更优的识别性能。