基于RFID技术的室内定位系统设计

 

  图3 单片机外围电路原理图

 

  2.2 射频通信模块

 

  考虑到功耗、接收灵敏度、传输速率和芯片成本等因素,系统采用了TI 公司的无线射频收发芯片CC2500 作为无线通信模块控制器。CC2500 是TI 公司推出的一款低成本、低功耗、体积小的2.4 GHz 无线通信频段的收发器,工作频率波段为2400~2 483.5 MHz。RF 收发器集成了一个数据传输率可达500kbit/s 的高度, 可配置的调制解调器和一个64 位传输/接收FIFO(先进先出堆栈)。CC2500 的寄存器配置可通过SPI 接口控制。它具有载波监听和休眠模式,非常适合低功耗应用。

 

  射频通信模块主要由CC2500 收发器、传输与接收天线及其外围滤波、匹配网络组成,其中天线采用了Rainsun 公司的贴片天线,系统电路原理图如图4 所示。

 

  基于RFID技术的室内定位系统设计

 

  图4 CC2500 外围电路原理图

 

  CC2500 通过4 线SPI 兼容接口(SI,SO,SCLK 和CSN)与PIC16F877A 相连,这个接口用作写入和读取数据。SI 为数据输入线,SO 为数据输出线,SCLK 为时钟线,CSN 为片选信号线,低电平有效。SPI 接口的状态控制线还包含一个读/写信号控制线。CC2500 的状态寄存器里指示一些系统的工作状态信息。

 

  2.3 电源模块

 

  RFID 室内定位系统一般主要布置在楼宇、仓储建筑物等的内部,有些具有移动性,所以节点大多数需要采用电池供电,在元器件的选取中,尽量选择低功耗器件以降低系统功耗,2.4~3.6 V 的电压可以使系统中所有的器件和模块正常工作。因此,实际中采用与之电压匹配的高能纽扣锂电池作为供电电源。

 

  2.4 电磁兼容与抗干扰设计

 

  在设计2.45 GHz 的RFID 系统时要考虑电磁兼容性(EMC),以保证读写器和标签在设定的电磁环境和规定的安全界限内运行。在系统设计中,元件的选择和电路设计是影响电磁兼容的重要因素,对于射频通信模块需要去耦电容来去除元件状态转换引起的噪声电压,并且要注意信号源和信号终端的阻抗匹配。PCB 上的导线同样具有阻抗、电感、电容特性,因此在PCB 布局和布线也考虑了电磁兼容性等问题。布局是按照信号流程放置元件, 尽量缩短元件之间的连接,CC2500 底部通过多个过孔与地层连接。滤波电容尽量靠近器件放置,同时,为了抗电磁干扰,把数字电源和模拟电源、数字地和模拟地隔离开来。RFID 定位系统节点的布设位置应尽量避开高大障碍物,以减少对电磁波的阻隔,影响传输性能。

 

  3 系统软件设计

 

  3.1 定位算法的选择

 

  本RFID 定位系统采用LANDMARC 定位原理。LANDMARC定位算法适用于有源RFID 室内定位。它将具有固定位置信息的标签作为定位系统中的坐标参考点,通过参考点标签与移动读写器之间的通信,获取两者之间的无线射频信号强度值RSSI, 继而获取读写器与多个参考标签之间的RSSI 值,根据RSSI 与通信距离之间的对应关系,获取读写器与多个参考标签之间的距离关系。LANDMARC 算法可以通过比较读写器与参考标签之间RSSI 值的大小来获得离读写器距离最近的几个参考标签,然后根据这几个最邻近参考标签的坐标,并结合它们的权重,可计算出读写器的坐标。

 

  3.2 RFID 定位算法

 

  无线信号的接收信号强度和信号传输距离的关系可以用式(1)来表示,其中RSSI 是接收信号强度,d 是收发节点之间的距离,n 是信号传播因子。

 

  基于RFID技术的室内定位系统设计

 

  由式(1)中可以看出,常数A 和n 的值决定了接收信号强度和信号传输距离的关系。射频参数A 和n 用于描述网络操作环境。射频参数A 被定义为用dBm 表示的距发射器1 m时接收到信号平均能量的绝对值。如平均接收能量为-40dBm,那么参数A 被定为40。射频参数n 指出了信号能量随着距收发器距离增加而衰减的速率,其数值的大小取决于无线信号传播的环境。