人脸识别用处多 还能证明“你就是你”

  虽然如此,“人脸识别技术比人的识别能力要强,而且强不少”,北京旷视科技市场与经营部总经理谢忆楠对南都记者说,“比如一个银行柜员对人脸识别的精度可能达到万分之一误识率,通过率可以超过90%;而我们最好的成绩是十万分之一的误识率,通过率可以超过97%-98%。”生物识别技术已经得到世界各大科技公司的重视。苹果推出指纹识别T ouchID,三星、小米已开始试水人脸解锁屏幕。

  原理

  把人脸分为100多个点

  模拟神经网络运算过程

  人脸识别研究始于上世纪60年代末至70年代初,与指纹识别、掌纹识别、虹膜识别等都属于生物识别技术的一种。早期人脸识别技术,是测量人脸上根据眼角、鼻孔、嘴巴、下巴几个部位的几何关系,通过图像库中的人脸模板,与待识别人脸在灰度上的相似程度,来实现人脸识别。其弊端是容易丢失有用信息,在视角、表情等变化的情况下识别能力很差。

  进入上世纪90年代,随着计算机技术的快速发展,在经历了技术的数次更新迭代之后,人脸识别技术已从最初对背景单一的正面灰度图像的识别,发展到能识别不同侧面的静态人脸,目前能做到动态进行人脸识别。

  国际上,比较领先的研究机构是美国的麻省理工学院和英国的剑桥大学。国内关于人脸自动识别的研究始于20世纪80年代,主要的研究单位有清华大学、哈尔滨工业大学、中科院等。近年,在中国的互联网创业浪潮下,一批有着学术背景的新型生物识别创业团队开始崛起,如旷视科技下的face++团队、腾讯下属的优图团队等,采用了更先进的“深度学习”算法,用神经网络模拟人的神经网络运算过程,能达到更高精度。

  成立于2012年的face+ +团队,已经与蚂蚁金服及多家银行开展合作。该团队所属公司的市场与经营部总经理谢忆楠对南都记者介绍,“比如有人在摄像头前,用手捂住了半张脸,按照传统回归算法,系统认为他不是一张人脸。因为它不符合系统通过回归运算得出的人脸标准结构;而深度学习算法,在判断是人脸的基础上,则会进入第二层判断,多重验证。”

  作为人工智能技术研究的新阶段,深度学习算法相当于“教机器模仿人类的学习机制”。采用此算法后,操作者可以给系统提供大量数据,使其自己具备学习能力。比如,深度学习算法机器人,通过扫描互联网上猫的图片,操作者输入“猫”,然后经过一段时间,机器将这种毛茸茸的小动物与“猫”联系到了一起,可以自行鉴别什么是猫。谢忆楠介绍,目前该公司的人脸验证技术,“第一步是证明你是人,第二步是证明你是你。”在深度学习算法下,系统能够更加智能地识别人脸。

  因为时间原因,身份证照片和用户当前的照片往往有一些差异,比如脸的宽度等,但瞳孔间的距离则相对恒定。传统回归运算可能会出现误差,深度学习算法则把人脸分为100多个关键点,尽量避免误差。

  金融支付和安防行业应用前景最广

  “这个市场未来会很庞大,未来将进入野蛮扩张期。”上海逗点科技公司负责人张晰对南都记者说。他认为,人脸识别技术在安防行业未来将获得更大的想象空间。该公司研发出“低分辨率小图像的重建与识别”技术,协助公安部门破案。“比如有的案件,犯罪嫌疑人戴着墨镜遮住半边脸,我们的技术可以缩小范围。还有的视频中的像素点很低,通过这种软件复原,能从五六十万人中,把犯罪嫌疑人圈定在几百个人的范围内。”张晰表示。

  此外,在重大会议中,参会者上传身份资料,并输入到门禁系统中,也可以甄别是否本人。上海逗点的技术,曾用于2008年北京奥运会和2014年的上海亚信峰会。在北京奥运会期间,观众进入鸟巢前,除门票外,还要逐一在进场通道前拍照。摄像头会在两秒内抓拍人脸,定位面部关键点,并提取特征,随后将认证结果同时上传到计算机,再通过计算机与观众的身份信息进行比对。

  除了安防行业,人脸识别技术的另一大应用场景,是在金融支付领域。快速发展的互联网金融行业,需要个人征信体系作支撑,产业需求越来越大。而用户身份识别,成为登录征信系统的第一步。这正是人脸识别技术大规模商用的潜力所在。

  比人的识别能力强,但暂时还是辅助手段