AlphaGo学习人类策略:人工智能下一步是理解人类

  谷歌人工智能AlphaGo早在今年1月28日,以5-0的成绩击败欧洲冠军职业围棋二段选手樊麾,人工智能将取代人类大脑的争论又一次成为人们热议的话题。时隔2个月,谷歌AlphaGo再战韩国九段围棋高手李世石,引发众多舆论波荡。截止目前为止, AlphaGo已连赢两局,不仅让李世石毫无掌控棋局之力,也将人类大脑逐渐逼上绝路。

  AlphaGo胜在大数据与深度学习的技术优势:没有人性的弱点

  关于李世石为什么会输,业界存在诸多看法。其中一种看法是认为人类相对于机器,更容易受到情绪的干扰而导致犯错,而机器却没有情绪波动。然而,事实上,AlphaGo胜出源于做到了“知己知彼”,谷歌利用大数据与深度学习的技术优势为AlphaGo构建了一套策略网络,机器通过深度学习能力,模拟人脑的机制来学习、判断、决策。即AlphaGo可以从大量的棋谱和对局中学习策略,形成一套落子决策判断与数据解读的能力体系,让其在冲杀状态下懂得一套试探与引导的能力,最终成功击败人类棋手李世石。

  巨头正在试图通过人工智能攻克最后一座堡垒:理解人类和语言

  从AlphaGo连赢人类九段棋手李世石中,我们可以看到,人工智能神经网络的前景在于它在不断缩小机器和人类之间的差距,而且随着技术开发者的跟进,人工智能将会对理解人类语言,揣摩人类情感。比如我们看到的,扎克伯格曾定下2016年的个人目标,即创建一个类似《钢铁侠》中的人工智能助手。“我开始准备了解现有的技术,并将教会人工智能助手理解我的语音,让它学会控制家中的一切,比如音乐、灯光、温度等。我还计划教会助手识别朋友们的面孔,当朋友们按门铃时,它会让他们进入。”扎克伯格在其Facebook个人主页中写道。

  理解人类,这对于巨头们的想象空间在于,基于用户需求的商业决策会因此更加精准。人机对战让我们看到,推理、判断、分析问题等功能处理之外,识别人的情感与情绪与对人的语言理解力将是未来发展的高地。围棋大战,只能体现出,在封闭规则的计算领域,机器比人类聪明得多,因为我们的心算能力本身与计算器相差甚远;但是思维、对话、情感等都是不确定的。而前面说到,机器没有情绪,只有它懂得了人类的语言,逐渐了解人类表达的意思甚至是情绪,才意味着人工智能达到了更高的领地。

  而语音搜索,则是打开人工智能进阶大门的钥匙。百度的语音搜索,就是多种人工智能技术整合起来的典型应用,包括语音识别、自然语言处理,因为它比下围棋这种单一任务、封闭规则的任务要复杂得多。语音搜索借助核心的自然语言处理技术(NLP),通过典型的多轮对话交互模式,逐步理解人类语言和意图,并提供需要的信息。

  语音搜索的结果不仅能提供聚合的数据,还会通过语音播报,将用户从输入文字的桎梏中解放出来,为中老年用户提供方便。从上面的例子看出,搜索引擎能够通过多轮对话的方式,联系用户的上下文,准确地通过用户的语言,理解真实的搜索需求,一步步给出相应的反馈。除此以外,搜索结果是基于对数据的挖掘和聚合呈现,通过数据为用户决策提供依据。说白了,就是机器将可以通过语音“理解”人类的真实意图,在大数据基础上提供智能的交付,满足需求。而且,通过背后的机器学习技术搜索引擎还具备像人类神经网络一样的深度神经网络,吸取人类语料数据,就是具有学习进化的能力。

  谈到语音技术,除了谷歌在该技术上地不断优化,使用上下文、物理定位及其他方式对谈话者的真正含义进行预测之外,百度度秘则更是基于二者技术的人工智能产物,并寄托了连接人与服务的生态构想。度秘可以在广泛索引真实世界的服务和信息的基础上,依托搜索及智能交互技术,不断学习和替代人的行为,为用户提供多样化服务。例如:可以实现“帮我订一张适合小孩看的电影票”、“餐厅附近有没有宠物美容店”等一系列的多轮对话、预定等任务。百度此前认为,与同为支持语音、文字交互的微软小冰、苹果 Siri 相比,度秘有着更为突出的特性,包括语音识别技术与更为核心的自然语言处理技术(NLP),当机器获得人说的话之后就需要进行理解,而自然语言处理(NLP)技术是不断去分析用户搜索意图,通过反复学习与大数据分析,更为高效地帮助用户做出决策。