七大人工智能技术优化传感器系统

  图5所示为传感器系统针对焊接识别模块做出焊接要求建议。这一模块评估建议并决定最佳的焊接轨迹。建议随后被发送给实际的机器人程序生成器。

物联网

  近期的应用包括特征识别、热交换器、焊点检查、点焊参数优化、电力、触觉显示和车辆传感系统。

  遗传算法

  遗传算法是一种随机最优化过程,其灵感来自于自然演化。遗传算法能够在复杂的多向搜索中产生全局最优解决方案,无需针对问题本身的特定知识。遗传算法已经在传感器系统中找到了用武之地,包括复杂组合或者多参数优化,包括装配、装配流水线平衡、故障诊断、健康监控和动力方向盘。

  环境智能

  环境智能在最近几十年获得了长足的发展,见证了人类在数字控制环境中便利的工作过程,电子设备可以预测他们的行为并做出响应。环境智能的概念用于实现人类和传感器系统之间的无缝匹配,满足实际的预期的需求。工业领域内的应用尚有局限,但是新型的更加智能且具有更高交互性的系统已经处在研究阶段。

  扩展系统

 

  人工智能能够增加通讯的有效性、减少故障、最小化误差并延长传感器的寿命。在过去40年间,人工智能技术带来了一系列功能强大的工具,如前文所列。这些工具在传感器系统中的应用越来越广泛。合理地采用新型人工智能技术方法将会有助于构建更加具有竞争力的传感器系统。由于工程师对这种技术的陌生以及使用这些工具仍旧存在的技术壁垒,也许还需要另一个10年工程师们才能够接纳它们。然而,这一领域的研究不会停歇,很多新型传感器应用正在出现,这些技术的搭配使用将会发挥出更大的作用。