数据驱动
像人工智能之父Minsky他认为多样性的数据去描述智能模型更有效,因为虹膜的本质就是多样性和复杂性的,这样我们就提出数据驱动,就是用数据神经网络的模型来用虹膜识别大数据来定义这样的方法。比如说用人工设定的规则去做虹膜图像的分割,现在简单用机器自动去学大数据模型就会提高19%,这样就可以实现虹膜识别概念要素和数据定义,包括这种噪声虹膜图像分割实现了非常好的效果。
并且我们把这个方法,同时可以对这个民族进行分类,如果是单个神经网络只有98%的精度,但是用虹膜网络可以达到99%的精度,我们把深度神经网络用到虹膜图像,因为虹膜图像可以来自于互联网或者是移动手机设备商,这样成像都具有差异化,克服这些差异化我们以前也研究了很多的方法,我们采用共同空间的方式去表达模型,后面我们采用了数据驱动,就是说 深度学习来做虹膜图像的识别,也是比传统的方法提高了很高的精度。
虹膜识别系统所面临的安全问题
最后一个问题就讲一下虹膜系统将来会面临一些安全的问题,因为虹膜是信息安全系统,每个环节都可能受到安全的攻击,比如说传感器可以伪造数据来进行攻击,包括特征提取和体征比对都会有安全攻击的问题,重点是解决 两个安全分析 。比如说前端伪造虹膜纹理怎么去进行判断和识别,后端怎么保护虹膜特征模板,保护用户的隐私。
前端伪造虹膜纹理识别和判断方法——活体识别
为识别伪造虹膜纹理,我们采用的是 活体检测 的方法。在活体检测方法中目前主要的方法是纹理分类方法,就是真实用户采集的虹膜,是非常自然圆润的,然后假体的虹膜纹理,成像会形成一些比较粗糙的纹理,因为我们采用纹理分类的方法来进行区别。
我们活体检测方法也用在 人种分类和大规模数据库粗分类 ,都取得了很好的效果,我们就是用 很多人的虹膜大数据去自动实现层次化的视觉基元词典 ,然后在这个投影上进行分类,当前国外银行有这样的需求,因为活体检测现在99%以上可以检测假冒瞳孔虹膜图像,对于隐形眼镜可以自动判断或者是自动报警,并且同样的模型不仅能够解决虹膜活体检测的问题还可以实现人种的分类。
后端虹膜特征保护——虹膜密钥系统
比如说传统的虹膜识别,虹膜是跟基因没关的,后来我们的研究虹膜跟基因还是有关系的,亚洲人跟欧洲人的虹膜是有很大的差异,我们可以用自动分类的方法达到99%的精度,你给我一个虹膜图像我就知道这是亚洲人还是欧洲人,我们还提出了虹膜密钥的系统,我们把它跟信息安全相结合,我们提出了虹膜密钥的方法,同时保护虹膜模板同时也可以保护密钥, 虹膜密钥是虹膜识别和密码学有机结合的安全体系,既能保证虹膜特征和密钥的安全,同时基本的思路采用模糊承诺的方式。
基本原理可以把512字节的虹膜特征编码跟密钥的纠错编码生成密钥编码进行运算,然后运算完的结果就是安全的结果,并且这个结果很难攻击出来,除非你知道我这个密钥,但是只要是本人就可以通过虹膜比对的结果,即使不能够百分之百的比对上,只要错误误差在一定的范围之内就可以用这个纠错编码把密钥给解出来,这样的话可以实现虹膜特征,是可以可撤销的。