基于机器学习方法的POI品类推荐算法

 

  建模

 

  完成了特征表示、特征选择后,下一步就是训练分类模型了。机器学习分类模型可以分成两种:1)生成式模型;2)判别式模型。可以简单认为,两者区别生成式模型直接对样本的联合概率分布进行建模:

  生成式模型的难点在于如何去估计类概率密度分布p(x|y)。本文采用的朴素贝叶斯模型,其”Naive”在对类概率密度函数简化上,它假设了条件独立:

  根据对p(x|y)不同建模形式,Naive Bayes模型主要分成:Muti-variate Bernoulli Model (多项伯努利模型)和Multinomial event model(多项事件模型)[4]。一次伯努利事件相当于一次投硬币事件(0,1两种可能),一次多项事件则相当于投色子(1到6多种可能)。我们结合传统的文本分类解释这两类模型:

 

  多项伯努利模型

 

  已知类别的条件下,多项伯努利对应样本生X成过程:遍历字典中的每个单词(t1,t2…t|V|),判断这个词是否在样本中出现。每次遍历都是一次伯努利实验,|V|次遍历:

  其中1(condition)为条件函数,该函数表示当条件成立是等于1,不成立时等于0;|V|则表示字典的长度。

 

  多项事件模型

 

  已知类别的条件下,多项事件模型假设样本的产生过程:对文本中第k个位置的单词,从字典中选择一个单词,每个位置k产生单词对应于一次多项事件。样本X=(w1,w2…ws)的类概率密度:

  采用向量空间模型表示样本时,上式转成:

  其中N(ti,X) 表示特征词i在样本X出现的次数。

 

  参数估计

 

  好啦,一大堆无聊公式的折磨后,我们终于要见到胜利的曙光:模型参数预估。一般的方法有最大似然估计、最大后验概率估计等。本文使用的是多项伯努利模型,我们直接给出多项伯努利模型参数估计结论:

  还记得特征表示一节中统计的term_category_frequency和category_frequency两张表吗?此时,就要发挥它的作用了!我们,只需要查询这两张表,就可以完成参数的估计了,是不是很happy? 过程虽然有点曲折,但是结果是美好的~ 具体参数意义可以参见特征表示一节。

 

  接下来的coding的可能需要关注的两个点:

 

  参数平滑

 

  在计算类概率密度p(X | Cj)时,如果在类Cj下没有出现特征ti ,p(ti | Cj)=0,类概率密度连乘也将会等于0,额,对于一个样本如果在某条件下某个特征没有出现,便认为她产生的可能等于零,这样的结论实在是过武断,解决方法是加1平滑: