当大物联遇上小纳米

  理论:物联网正向三个方面转变

 

  “物联网”(IoT)这个名称描述了让互联网得以延伸至实体世界的几种技术和研究科目。射频识别(RFID)、短程无线通信、实时定位和传感器网络等技术正变得日益普及,让物联网得以实现。

  实际上,在万维网问世、手机在全世界范围里普及后,物联网代表了在我们有生之年里发生的最具颠覆潜力的技术革新。随着预期多达500亿至1000亿件物品在 2020年前被链接到互联网上,我们正在经历一次重大变化,日常物品将变得相互连接和智能化。

 

  然而,对于“智能事物”及其形成的体系,人们的理解、使用、互动和经验并未与之同步发展,而这造成了技术、社会、经济和政治方面的巨大后果。为此,学术界和产业界的大批科研人员,还有商家、政府机构和城市正从三个主要方面探索这一激动人心的技术:科学理论、工程设计和用户经验。 在这种更全盘化视野的促进下,研究团体把专注点从系统转移到了终端用户。这种转变的目标是向用户提供理解和控制自己所在的环境所需的知识,以及超越传统桌面的新的互动界面,从而让用户获得更强大的能力。

 

  物联网已经改变了互联网的使用方式。通过物联网,各种各样的物体、传感器和设备能够互相交互形成无处不在的网络,从而改善我们的日常生活。比如在卫生保健领域,人体局域网(body area network)收集非常重要的病人信息,并将其送到服务提供商的计算系统,从而使更精确、更有效地监控大量的人群成为可能。嵌入在环境中的传感器还可以给老年人和残疾人提供随处可得的生活帮助。

 

  在互联网和感应技术发展的同时,纳米技术也在进步。自从理查德·费曼在1959年发表了关于纳米技术的着名诺贝尔奖获奖演讲以来,这个领域发展迅猛,制造出有很多应用的复杂设备。特别是近些年来,纳米通信学科的出现,目标是为纳米设备创造新的交互模式以提高它们的性能和应用水平。

 

  然而,纳米设备并不一定限制在点对点通信中。在用户周边的各种物体和设备中嵌入纳米传感器将会给物联网增加新的领域:纳米物联网(IoNT)。这些微型的传感器通过纳米网络互联,可以获得物体内部以及难以访问区域的细分数据,从而可以带来新奇的发现和应用。举例来说,人体纳米传感器可以提供心电图和其他至关重要的信号,而环境中的纳米传感器则可以收集特定区域的病原体和过敏原信息。通过 IoNT 将这两种数据源结合就能更容易精确诊断和监控病人的情况。

 

  IoNT 的概念是由伊恩·阿基迪兹(Ian Akyildiz)和约瑟夫·乔奈特(Josep Jornet) 提出的。他们概述了电磁纳米设备通信的总体架构,包括信道建模、信息编码和协议。这些研究者描述了最适合纳米级通信的元件,并集中讨论了基于石墨烯的纳米天线。这种天线在百亿赫兹波段具有最高能效。然而,这导致了独特的且易受影响的属性,比如由分子吸收引起的路径损失和噪声会影响波在传播过程中的衰减。阿基迪兹和乔奈特还提出了一种新的路由形式以及在基于 EM 的纳米通信中需要的服务发现。

 

  挑战:纳米通信看易行难

 

  实现 IoNT 必须面对两个挑战:在纳米网络中建立数据采集和路由机制,开发中间件以链接传统的微传感器和纳米网络。我们也会涉及扩展目前的上下文和服务管理系统以支持 IoNT 所必需的东西,以及其他一些可能的 IoNT 应用。

 

  设想中的IoNT包括下层链接众多纳米传感器的纳米级网络,与纳米网络交互并分布式处理它们自己信息的设备以及上下文和服务管理系统。虽然研究者提出了多种纳米通信方法,这里我们只考虑两种最实际的:分子通信和电磁通信。

 

  纳米设备可以在生物环境中交互,比如在人体中就可以通过覆盖现有的器官通信系统或者利用像核苷酸、氨基酸、 肽等的生物分子来通信。譬如,对细胞重新编程使其成为传感器。