在今天早上你到达办公室的那一刻为止,你可能在没有意识到的情况下已经使用了4次射频标签(RFID),分别是:在你插入车钥匙、关闭发动机防盗锁止系统电路之时;在你开车经过无人收费站自动付费之时;在你使用手机支付早上的热牛奶咖啡之时;在你利用身份证件登记进入办公室之时。RFID也许还没有广泛普及,但正在逐渐取得成功。
第一批由射频输入供电的无源应答器可以追溯到20世纪70年代初,当时就像今天大多数各式各样的RFID应用情景一样。正是有了今天半导体技术的可喜进步,才使得RFID真正开始腾飞。
在商业市场中,RFID提供了史无前例的机会,通过提供非常细致的数据以及使支付和记录保留等服务实现自动化,可以提高产能并改善用户体验。RFID被广泛用于各种应用,如牲畜身份识别、零售库存管理、病历管理、电子不停车收费、电子护照,以及更近一些的手机,它们将是特定RFID技术的重要推手。
RFID标签(RFID的身份部分)的市场正在快速增长,并有望得到加速发展。例如IDTechEx公司就预测,2021年无源RFID标签数量将从2011年的不到30亿个增长到约2500亿个。
从工程角度看,RFID不是一种单一技术,它随频率改变而有所变化。其可以采用许多种载波频率,但其中三种占主导地位(见表1)。低频(LF)使用 125kHz至135kHz频段,高频(HF)工作在13.56MHz。UHF(超高频)主要在865MHz至955MHz频段中使用,虽然它也可能包含 2.4GHz频段。
表1:RFID频段及应用
大多数RFID系统设计工作主要集中在读取器系统。半导体公司设计和制造的应答器(标签)的应用和特性将主要决定读取器的设计。一般来说,有两种类型的标签可以用来与读取器通信:含嵌入式电池的有源标签,和无电池的无源标签。无源标签更加常见,本文将只讨论无源标签。
耦合技术
电磁耦合在决定无源标签的读取范围方面发挥着重要的作用。LF和HF RFID系统使用电感耦合。能量通过共享磁场从读取器线圈传送到应答器(标签)线圈。
LF和HF系统中的读取器天线会在一个被称为近场的电磁区域中创建一个强大磁场,范围距天线最多约一个波长。这个磁场的强度足以唤醒标签,并给它提供将身份数据传送给读取器所需的电源。电感耦合还可以使用相同的能量传送机制用来写标签(图1)。
图1:用于LF和HF系统(包括NFC在内)的电感耦合发生在近场区域内。
UHF RFID系统工作在距天线约两个波长到无限远的“远场”,可以实现比LF和HF系统更大的读取范围。标签天线利用一种被称为后向散射耦合的技术接收读取器天线的电磁能量,RFID芯片再使用这个能量改变天线上的负载,并反射回包含身份信息的改变信号。
在实际应用中,标签是为特定应用设计的,在频率、内存容量、支持的标准和天线设计方面都有变化。德州仪器(TI)公司的Tag-it HF-I Plus应答器在微小的矩形外形中提供了2kb的内存,适合用于产品鉴定、资产管理和供应链管理。它是一种工作在13.56MHz频率的HF标签。
在内存规模的另一端,恩智浦(NXP)公司的HITag μ应答器集成了128kb的内存。这是一种LF标签,适合用于牲畜识别、洗衣自动化以及啤酒桶和煤气罐的物流运输。
设计目标
特定RFID系统读取器的特性很大程度上取决于具体应用,虽然有一些目标跨越应用界限。就像在大多数工程项目中成本很重要,这通常意味着尽量减少材料清单,尽量提高标签制造商提供的附加价值,如开发工具、参考设计和软件。
机械设计应该坚固耐用,并提供防破坏保护功能。还要注意系统所在地政府的频率分配。系统很容易部署和操作也很重要,因为最终用户不是技术人员。