Manuela M·Veloso介绍,通过自主学习与寻求帮助机制的植入,让人与机器人的对话帮助它们完成更多任务,目前该研究小组已积累了数千种不同类型的任务。
中国科学技术大学机器人实验室主任、中国RoboCup委员会主席陈小平也指出,在机器人的自主学习中,要学会根据目标搜集相关资料,比如,它在接到使用微波炉加热爆米花的任务后,可以迅速联网下载微波炉使用手册获得这项技能。
但是,机器人有不同的类型,不可能通过一个机器人完成所有任务,不同国家的机器人有着不同需求,并面临语言的差别。因此,Manuela M·Veloso建议应建立起一个平台,鼓励机器人信息共享。
待解的技术之问
除了前沿技术大趋势,机器人在“进化成人”的道路上,也不可避免在技术爆炸的漩涡中留下需要人们不断探索的待解之题。
人工智能技术包括什么?什么是人工智能的核心内容?抛开自然语言理解、图像视频识别、搜索算法、知识工程外,人工智能技术还有什么?
在“机器学习与模式识别”讨论环节,中科院自动化所研究员宗成庆提出了以上问题。
机器学习在不到10年的时间里,迁移学习、增强学习、概率图模型、深度学习等相继被热捧。而之前每一种学习方法的研究都持续不过2~3年。
“无论哪一种统计学习方法都是建立在大规模测试样本之上的模型,难以做到举一反三。现在机器学习是在向正确的方向发展吗?”宗成庆追问。
“在自然语言处理中,很多问题都被转化为分类问题或者序列标注问题。但不同的问题使用相同的解决方法,自然不会得到很好的处理结果。图像、视频分析作为模式识别最基础性的问题,在边界分割、模式匹配、检索等方面取得了若干优秀成果,但在多大程度上体现了‘智能’,尚不可知。” 宗成庆说。
深度学习方法与人工神经网络方法在数学计算上有没有本质区别?机器要真正实现从“处理”到“理解”的出路何在?简单的技术集成是否会成为“智能系统”?宗成庆表示,仍有太多的技术问题需要人们继续关注。
最后,宗成庆感叹并总结道:“人工智能的技术变化非常快,有的被冷落后由于硬件性能改变而再次被推向波峰,甚至经历多次轮回。如何在热闹中把握‘冷和热’的平衡,既保持冷静的头脑又坚守自己的学术理想,值得探讨。”
人人皆可参与人工智能
人工智能可以通过语音、图像,还有对产品的推介和交互,帮助人们理解个体,同时可以利用不同的场景来达到学习的功能。
比如,可以通过人与人之间的连接、社交网络的分析,对文章的内容以及公众号、大众点评等数据分析来建立一种新的知识,分析对象的特征、喜好、社会关系等信息会形成一个巨大的知识图谱,有了知识图谱以后,人工智能的载体就能对用户提供服务的推荐,帮助用户智能个性化的搜索,进行知识的传播或智慧的整合,形成所谓的群体智能。
例如,移动视觉的搜索能提供不同场景的识别,深度学习又可提供基于朋友圈的用户模型的建立,有了这个用户模型,我们知道微信推出了非常有意思的广告方式,使得大家把广告和朋友圈上面的图片发布有机融合在一起,变成一个非常有意思的事情。
另外,常见的漂流瓶是一种已有的基于人和人之间的问答模式,比如,带一个问题扔一个瓶子,这个瓶子如果有人捡到并回答它的话,这两个人的关系就建立起来了。现在可利用这样一种功能来补充知识,不断把机器人回答不了的问题,用瓶子的形式扔到海洋问题库里,知道的人就可以回答这个问题,以此不断增加机器人知识的覆盖面。