物联网时代中边缘计算的巨大价值是什么?

5)智能计算

不仅是消费级的物联网终端,边缘计算还将在工业应用中发挥重要作用。计算可以分层执行,利用网络远端的资源完成。例如,典型的生产流水线可以过滤设备上生成的数据,在传输数据的边缘节点上执行部分分析工作,之后再通过云端执行更加复杂的计算任务。边缘节点可以通过分担云计算的部分任务,增强数据中心的计算能力。

业务流程优化、运维自动化与业务创新驱动业务走向智能,边缘侧智能能够带来显著的效率提升与成本优势。事实上,对于从事工业自动化工作的人而言,边缘计算并不陌生。比如,在目前普遍采用的基于PLC、DCS、工控机和工业网络的控制系统中,位于底层、嵌于设备中的计算资源,或多或少都是边缘计算的资源。

 

目前规模以上冶金企业,其信息化已经做得颇具成效,但缺少的恰恰是末端智能。冶金方面的数据经常会出现完整性和一致性的问题,俗称“脏”数据。解决不好这方面的问题,会给能源管理和智能管理环节造成很大的困扰。边缘计算在其中发挥着重要作用,成为工业物联网技术的有效补充。

 

blob.png

边缘计算所面临的挑战

边缘计算仍处于起步阶段,当前的云计算服务(如Amazon Web Service,Microsoft Azure和Google App Engine)可以支持数据密集型的应用程序,但在网络边缘进行实时的数据处理仍是一个有待开拓的领域。

此外,若想更好的在边缘节点上部署应用程序的工作负载,需要考虑以下几个方面:

部署策略:如何部署工作负载

连接策略:何时使用边缘节点

异构性:如何处理不同类型的节点

 

blob.png

为了实现边缘计算,我们认为在硬件、中间件和软件层面,有以下5个挑战需要解决。

挑战1:边缘节点上的通用计算能力

理论上,可以在位于边缘设备和云平台之间的某几个节点上完成边缘计算,包括接入点、基站、网关、业务节点、路由器、交换机等。例如,基站可以根据工作负载能力,执行数字信号处理(DSP)。但是在实践中,基站可能并不适合处理分析工作,因为DSP并不是为通用计算设计的。此外,这些节点是否可以执行除了现有工作之外的计算还不太清楚。

由CAVIUM提供的OCTEON Fusion? Family是一个小型“芯片上基站”单元,可扩展从6个到14个的内核,以支持32到300+的用户。这种基站可在非高峰时间使用多个计算核心的运算能力。

许多供应商也已经迈出了使用软件解决方案实现边缘计算的第一步。例如,诺基亚针对移动边缘计算(MEC)的软件解决方案旨在为基站站点提供边缘计算能力。同样,思科的IOx为其集成的服务路由器提供了一个边缘计算环境。这些解决方案应用于特定硬件,因此不适合部署在异构环境中。

软件解决方案面临的一个挑战是如何开发跨越不同环境的可移植的解决方案。某些公司正在研究升级边缘节点,以支持通用计算需求。例如,可以升级无线家庭路由器以支持额外的计算任务。英特尔的Smart Cell Platform使用虚拟化技术,支持额外的计算任务。通用CPU替换专用DSP提供了另一种解决方案,但却需要巨大的投资。

 

blob.png

挑战2:发现边缘节点

到2020年将有500亿的终端和设备联网,除了边缘设备与终端联网最大的“异构”特征之外,产品生命周期越来越短、个性化需求越来越高、全生命周期管理和服务化的趋势越来越明显,这些新趋势都需要边缘计算提供强大的技术支撑。

如何在分布式计算环境中发现资源和服务是一个有待拓展的领域。为了充分利用网络的边缘设备,需要建立某种发现机制,找到可以分散式部署的适当节点。因为可用设备的数量庞大,这些机制不能依靠人工手动。此外,还需要使用多种异构设备满足最新的计算需求,比如大规模的机器学习任务。