工业物联网框架中边缘节点的检测和测量

  工业物联网(IoT)正在酝酿广泛的转变,这种转变不仅将使互联机器间的相互检测成为一种竞争优势,还将使其成为必不可少的基本服务。工业物联网以边缘节点为起始点,后者是检测和测量的目标切入点。这是物理世界与计算数据分析进行交互的接口所在。互联的工业机器可检测大量的信息,进而用于制定关键决策。这种边缘传感器可能远离存储历史分析的云服务器。它必须通过将边缘数据聚合到互联网的网关进行连接。理想情况下,边缘传感器节点具有很小的规格尺寸,可在空间受限的环境中轻松进行部署。

  检测、测量、解读、连接

  边缘节点的智能管理对成功实施来说十分关键。在一些情况下,超低功耗(ULP)是最重要的性能指标。在关键事件期间,当传感器从睡眠模式唤醒时,可以过滤掉绝大多数的潜在数据。

  传感器构成工业物联网电子生态系统的前端边缘。测量阶段将检测到的信息转换为有意义的数据,如压力、位移或旋转的可量化值。在解读阶段,边缘分析与处理会将测量数据转换为可操作的事件。只有最有价值的信息才应越过节点连接到云,以供预测或历史处理。在整个信号链中,都可以根据初始的可接受性限制来抑制或过滤数据。理想情况下,传感器节点应仅发送绝对必要的信息,并且应在获得关键数据后尽快制定关键决策。

  边缘节点必须通过有线或无线传感器节点(WSN)连接到外部网络。在信号链的这一部分中,数据完整性仍然十分关键。如果通信不一致、丢失或损坏,则优化检测和测量数据几乎没有价值。通信期间数据丢失是不可接受的。存在电气噪声的工业环境可能十分恶劣和艰苦,尤其是在存在大量金属物体情况下进行射频通信时。因此,必须在系统架构设计期间预先设计鲁棒的通信协议。

  ULP系统的功率管理以选择调节器元件来实现最大效率为起点。但是,由于边缘节点也可能以快速占空比唤醒和睡眠,因此还应考虑上电和掉电时间。外部触发器或唤醒命令能够帮助快速提醒边缘节点,使其开始检测和测量数据。

  

工业物联网框架中边缘节点的检测和测量

 

  图1. 边缘节点器件智能地检测、测量和解读数据并将其连接至与云相连的互联网网关。数据可以通过一些形式的分析进行预处理,然后再传输以进行更深的数据挖掘智能分析。

  数据安全性也是工业物联网系统必须考虑的一个问题。我们不仅需要确保边缘内的数据安全无虑,还必须确保其对网络网关的访问免受恶意攻击。决不允许仿冒边缘节点来获取网络访问以进行不法活动。

  智能始于边缘

  边缘处具有众多检测解决方案,这些解决方案可能不只是单个分立器件。边缘可能存在多种不同的无关数据采集。温度、声音、振动、压力、湿度、运动、污染物、音频和视频只是其中可检测的部分变量,这些数据会经过处理并通过网关发送至云,以进行进一步的历史和预测分析。

  毫不夸张地说,传感器就是工业物联网的支柱。但更准确的说法应该是,它们是获得洞察的中枢神经系统。边缘节点检测和测量技术是目标数据的“出生地”。如果在解决方案链的这一阶段如实地记录了不良或错误的数据,则云中再多的后期处理也无法挽回损失的价值。

  任务关键型系统(如具有高风险结果的医疗保健和工厂停机监控系统)要求质量数据测量具有鲁棒的完整性。数据质量至关重要。误报或遗漏可能代价高昂,非常耗时,甚至可能威胁生命。代价巨大的错误最终会导致计划外的维护、劳动力使用效率低下,甚至不得不禁用整个物联网系统。智能始于边缘节点,而此处也适用那句老话:如果输入的是垃圾,那么输出的也一定是垃圾。

  

工业物联网框架中边缘节点的检测和测量

 

  图2. 很多有线和无线边缘节点输出可自主连接到网关节点,以便在传输至云服务器之前进行聚合。